
Name:

UB ID Number:

Question: 1 2 3 4 5 6 7 8 9 10 Total

Points: 10 5 5 5 5 5 5 20 25 25 100

Score:

CSE421 Final Exam
07 May 2012

This final exam consists of four types of questions:

1. Ten multiple choice questions worth one point each. These are drawn directly from
second-half lecture slides and intended to be easy.

2. Six short answer questions worth five points each. You can answer as many as you
want, but we will give you credit for your best four answers for a total of up to
20 points. You should be able to answer the short answer questions in four or five
sentences. These are also drawn from second-half material exclusively.

3. Two medium answer questions worth 20 points each, also drawn from second-
half material. Please answer one, and only one, medium answer question. If you
answer both, we will only grade one. Your answer to the medium answer should
span a page or two.

4. Three long answer questions worth 25 points each, integrating material from the
entire semester. Please answer two, and only two, long answer questions. If you
answer more, we will only grade two. Your answer to the long answer question
should span several pages.

Please answer each question as clearly and succinctly as possible. Feel free to draw pic-
tures or diagrams if they help you to do so. The point value assigned to each question
is intended to suggest how to allocate your time. So you should work on a five point
question for roughly five minutes.

No aids of any kind are permitted.

Please fill out your name and UB ID number above. Also write your UB ID number at
the bottom of each page of the exam in case the pages become separated.

There are 11 scratch pages at the end of the exam if you need them. If you use them,
please clearly indicate which question you are answering.

I have neither given nor received help on this exam.

Sign and Date:



CSE421 Final Exam 07 May 2012

Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) Which of the following did not happen during lecture this semester?
⃝ Some students refused to stand-up. ⃝ Geoff dropped the f-bomb.
⃝ Chuchu wandered out of the lecture hall. ⃝ We checked the tempera-
ture in Berkeley.

(b) A head crash occurs when
⃝ two disk heads collide while scanning across the disk. ⃝ a violent move-
ment of a spinning disk causes the heads to make contact with the platter while
spinning. ⃝ Geoff’s head hits his desk after writing this exam. ⃝ a disk
head crashes into the spindle.

(c) All of the following are on-disk filesystem data structures except
⃝ inodes. ⃝ data blocks. ⃝ the superblock. ⃝ vnodes.

(d) Kirk McKusick is
⃝ the developer of the Berkeley Fast File System (FFS). ⃝ Captain Kirk.
⃝ the developer of the Log-Structured Filesystem (LFS). ⃝ dedicated to
using technology to monitor his extensive beer collection.

(e) Cylinder groups are an idea for improving spinning disk performance intro-
duced by
⃝ FFS. ⃝ LFS. ⃝ ZFS. ⃝ ReiserFS.

(f) It is possible to prove the correctness of a microkernel.
⃝ True. ⃝ False.

(g) All of the following describe ways to structure an operating system kernel except
⃝ multikernel. ⃝ zetakernel. ⃝ exokernel. ⃝ monolithic kernel.

(h) When your performance data has outliers, you should
⃝ assume they are experimental error and ignore them. ⃝ delete them and
never speak of them again. ⃝ love and try to understand them. ⃝ have
never discovered them by exclusively using summary statistics.

(i) Which of the following is not a useful approach to improving system perfor-
mance?
⃝ Carefully choosing an appropriate benchmark. ⃝ Improving the parts
of your code that you just know are slow. ⃝ Analyzing data from exper-
iments to identify bottlenecks. ⃝ Developing a new simulator to improve
reproducibility.

(j) Which of the following is not one of the requirements of implementing a hard-
ware virtual machine?
⃝ Fidelity. ⃝ Performance. ⃝ Atomicity. ⃝ Safety.

2 / 13 UB ID:



CSE421 Final Exam 07 May 2012

Short Answer

Choose four of the following six questions to answer. You may choose to answer addi-
tional questions, in which case you will receive credit for your best four answers.

2. (5 points) Using appropriate terminology, explain the process of moving from one
location to another location on a spinning disk. Identify each major source of latency.

3 / 13 UB ID:



CSE421 Final Exam 07 May 2012

3. (5 points) Describe how filesystem journaling works:

• What is written to the journal?

• How is the journal used after a crash to quickly return the filesystem to a consis-
tent state?

4 / 13 UB ID:



CSE421 Final Exam 07 May 2012

4. (5 points) Identify the difference between a write-through and write-back block-level
filesystem buffer cache. Which is better for safety? Which is better for performance?

5 / 13 UB ID:



CSE421 Final Exam 07 May 2012

5. (5 points) List several of the impacts that micro-kernel design and development has
had on modern monolithic operating systems.

6 / 13 UB ID:



CSE421 Final Exam 07 May 2012

6. (5 points) Define Amdahl’s Law and describe how it guides the process of perfor-
mance improvement.

7 / 13 UB ID:



CSE421 Final Exam 07 May 2012

7. (5 points) Assuming full hardware virtualization, describe how an application-generated
TLB fault is handled by the guest operating system. Assume that this virtual machine
architecture supports a software-managed TLB, and that the page causing the fault is
already resident in the virtual machine’s memory.

8 / 13 UB ID:



CSE421 Final Exam 07 May 2012

Medium Answer

Choose one of the following two questions to answer. Please do not answer both ques-
tions. If you do, we will only read one.

Complete this question on the scratch paper attached to the back of the exam. Clearly
label your answer.

8. (20 points) Label your medium answer as Question 8.

Virtual Machine fork()

You know all there is to know about fork(), of course, but your boss at your new software
development job just discovered fork() and thinks it is just the coolest thing. Unfortu-
nately he also just learned about virtual machines (the second coolest thing), and has
hatched a plan to combine the two. Or, to put it accurately, his plan to combine the two is
to ask you to implement an analog to fork() but one that forks virtual machines instead of
processes.

First, describe virtual machine fork() at a high level. Who would implement virtual ma-
chine fork()? How would they do it? Identify several significant differences between vir-
tual machine fork() and process fork() arising from the differences between processes
and virtual machines. (You may want to think about the rest of the process-related sys-
tem call interface—exec(), exit(), and wait()—and consider there are virtual machine
analogs to these process operations as well.)

Second, explain why this may or may not be a good idea. You may want to consider use
cases and overheads.

9 / 13 UB ID:



CSE421 Final Exam 07 May 2012

Log-structured File Systems on Flash Drives
Flash drives have very different performance characteristics than spinning disks. One
important difference is that, because Flash drives contain no moving parts, latencies for
access to different locations on disk are roughly constant.

Flash drives do, however, have drawbacks. One concerns how writes are performed. In
order to write a byte to a block on a Flash drive you must first erase the entire erase unit
that contains it, which are usually quite large. Given an erase unit of 16 Kb, the process
of modifying a single byte becomes:

• Read the entire 16 kB erase unit into memory in order to preserve the unmodified
contents across the erase.

• Change the byte we want to change in our cached copy in memory.

• Erase the erase unit.

• Write the entire modified erase unit back to the Flash drive.

The other important characteristic of Flash drives is that the individual erase units can
only be erased a fixed number of times, making it important to try and even out the
usage of different portions of the disk.

It seems like it’s time for log-structured filesystems to make a comeback, and maybe Flash
drives are the place! Let’s think this through. Begin by explaining why this may seem like
a questionable choice by identifying the key benefit of log-structured filesystems on spin-
ning disks that is lost on Flash. But continue by discussing how log-structured filesystems
might help address the two challenges of Flash devices outlined above.

10 / 13 UB ID:



CSE421 Final Exam 07 May 2012

Long Answer

Choose two of the following three questions to answer. Please do not answer all three
questions. If you do, we will only read the first two.

Complete this question on the scratch paper attached to the back of the exam. Clearly
label your answer.

9. (25 points) Label your first long answer as Question 9.

10. (25 points) Label your second long answer as Question 10.

Application Prefetching
Recall that on systems that use demand paging, page contents are not loaded into mem-
ory when the process address space is initialized during exec(). Over the lifetime of
a process, this procrastination-based technique has significant benefits. In particular,
pages containing code that is never executed by the application are never paged in to
or swapped out of memory.

One potential downside, however, of demand paging is that when an application first
begins executing it generates a large number of page faults to bring the code and libraries
it does use in from disk. Application prefetching is a technique supported by several
modern operating systems to reduce application startup times on systems with big, slow,
spinning disks by using the past to predict the future.

First, assuming that the code pages needed by the application as it loads are scattered all
over the disk, describe the potentially deleterious consequences of performing these I/O
requests in the order the process generates them on a large, spinning disk.

Second, explain why operating systems can accurate predict an application’s startup I/O
requests. To answer this question, you might consider what is fundamentally different
about the first few seconds of an application’s execution from other time periods and
how that would make its I/O patterns more predictable.

Finally, use these two observations to design application prefetching.

1. Explain what information you need to know about an application to prefetch effec-
tively and how to collect that information.

2. Describe what happens when a prefetched application begins running and how it
differs from a non-prefetched application.

3. Present an argument as to why your prefetcher improves application startup perfor-
mance.

11 / 13 UB ID:



CSE421 Final Exam 07 May 2012

Asynchronous System Calls
Throughout the semester we have considered system calls as being synchronous, or block-
ing: when a process performs a system call, it is blocked until the call completes. How-
ever, modern operating systems also support asynchronous, or non-blocking, system calls.
These allow a process to request the operating system perform some action on its behalf
while not requiring the process wait for the action to take place.

First, considering the system calls we have discussed throughout the semester, describe
several cases in which asynchronous system calls would be useful and how. Conversely,
describe several synchronous system calls that lack a meaningful asynchronous analog.

Second, describe any changes to the operating system interface that might be necessary to
support certain asynchronous system calls. Discuss any additional application program-
ming challenges that non-blocking system calls may introduce.

Third, briefly explain how a process that can fork multiple threads can emulate asyn-
chronous system calls without true non-blocking support from the operating system. De-
scribe the overheads to this approach that might make native asynchronous system calls
preferable.

Finally, describe the kernel changes necessary to support asynchronous system calls.
Walk through the steps required to complete a non-blocking call, describing what hap-
pens at both the process and kernel level.

12 / 13 UB ID:



CSE421 Final Exam 07 May 2012

Operating System Transactions
Transactions are a database concept and, for the purposes of this problem, can be defined
as a set of actions that must be atomic, consistent, isolated and durable. (Together these
requirements are known as ACID semantics.) We will focus on two of the ACID proper-
ties: atomicity and isolation. Atomicity requires that transactions either either all succeed
or all fail. Isolation requires that the changes made by a single transaction not be visible
in an intermediate state.

Traditional operating systems interfaces do not provide support for transactions spanning
multiple system calls. TxOS, a new research operating system developed at the Univer-
sity of Texas, asserts that adding transaction support will help solve a number of com-
mon operating system problems. One common problem is helping keep multiple related
files synchronized—adding a user to a UNIX system requires changes to /etc/passwd,
/etc/shadow and /etc/group, and certain utilities may fail if they read these files during
an update and find inconsistent state: a user without a password during user creation, or
a group containing a user that does not exist during user deletion.

First, describe how one of the two cases above can occur. List the system calls in pseudo-
code for the two processes involved and how they would interleave in time leading to
one process viewing inconsistent state. You can assume that both adding and removing a
user requires modifications to all three files mentioned.

Second, describe a solution that provides support for transactions consisting of multiple
modifications (via write()) to one or potentially multiple files. (This is much easier than
providing transaction support for the entire filesystem or operating system interface!) As-
sume that we have added two new system calls sys xbegin() and sys xend() delineating
the beginning and end of a single transaction. Your solution should meet the following
design requirements ensuring atomicity and isolation:

1. Any writes to files made by a process after calling sys xbegin() should not be visible
until that process calls sys xend().

2. Any files modified by the transaction can only be modified if they are in the same
state when the process calls sys xend() as they were when it called sys xbegin().
You must ensure this by either preventing them from being changed, or by aborting
the transaction if you detect that changes have occurred.

3. To achieve good performance you should attempt to keep any locking as fine-grained
as possible.

4. It is acceptable, and a property of many good solutions, to fail transactions, but there
should be reasonable conditions under which a reasonable transaction can succeed.
(Definitions of reasonableness are yours to provide.)

Finally, explain how operating system transactions might be useful when updating sys-
tem software.

13 / 13 UB ID:


