CSE421 Final Exam Solutions

—SOLUTION SET—
07 May 2012

This final exam consists of four types of questions:

1. Ten multiple choice questions worth one point each. These are drawn directly from
second-half lecture slides and intended to be easy.

2. Six short answer questions worth five points each. You can answer as many as you
want, but we will give you credit for your best four answers for a total of up to
20 points. You should be able to answer the short answer questions in four or five
sentences. These are also drawn from second-half material exclusively.

3. Two medium answer questions worth 20 points each, also drawn from second-
half material. Please answer one, and only one, medium answer question. If you
answer both, we will only grade one. Your answer to the medium answer should
span a page or two.

4. Three long answer questions worth 25 points each, integrating material from the
entire semester. Please answer two, and only two, long answer questions. If you
answer more, we will only grade two. Your answer to the long answer question
should span several pages.

Please answer each question as clearly and succinctly as possible. Feel free to draw pic-
tures or diagrams if they help you to do so. The point value assigned to each question
is intended to suggest how to allocate your time. So you should work on a five point
question for roughly five minutes.

No aids of any kind are permitted.



CSE421 Final Exam Solutions 07 May 2012
Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) Which of the following did not happen during lecture this semester?

(O Some students refused to stand-up. v/ Geoff dropped the f-bomb.
(O Chuchu wandered out of the lecture hall. () We checked the temperature
in Berkeley.

(b) A head crash occurs when

(O two disk heads collide while scanning across the disk. ,/ a violent move-
ment of a spinning disk causes the heads to make contact with the platter
while spinning. (O Geoft’s head hits his desk after writing this exam.
(O adisk head crashes into the spindle.

(c) All of the following are on-disk filesystem data structures except
O inodes. (O datablocks. (O thesuperblock. +/ vnodes.

(d) Kirk McKusick is

\/ the developer of the Berkeley Fast File System (FFS). (O Captain Kirk.
(O the developer of the Log-Structured Filesystem (LFS). (O dedicated to
using technology to monitor his extensive beer collection.

(e) Cylinder groups are an idea for improving spinning disk performance intro-
duced by
v FFS. (O LFS. (O ZFS. (O ReiserFS.

(f) Itis possible to prove the correctness of a microkernel.
y/ True. (O False.

(g) All of the following describe ways to structure an operating system kernel except
& g y p &Sy P
(O multikernel. / zetakernel. () exokernel. (O monolithic kernel.

(h) When your performance data has outliers, you should

(O assume they are experimental error and ignore them. () delete them and
never speak of them again. |/ love and try to understand them. () have
never discovered them by exclusively using summary statistics.

(i) Which of the following is not a useful approach to improving system perfor-
mance?
(O Carefully choosing an appropriate benchmark. v/ Improving the parts
of your code that you just know are slow. (O Analyzing data from exper-
iments to identify bottlenecks. (O Developing a new simulator to improve
reproducibility.

(j) Which of the following is not one of the requirements of implementing a hard-
ware virtual machine?

O Fidelity. (O Performance. ,/ Atomicity. () Safety.

2/20



CSE421 Final Exam Solutions 07 May 2012

Short Answer

Choose four of the following six questions to answer. You may choose to answer addi-
tional questions, in which case you will receive credit for your best four answers.

2. (5 points) Using appropriate terminology, explain the process of moving from one
location to another location on a spinning disk. Identify each major source of latency.

Solution:
The full list of steps presented in class is as follows:
1. Issue the command. The operating system has to tell the device what to do, the

command has to cross the device interconnect (IDE, SATA, etc.), and the drive
has to select which head to use.

2. Seek time. The drive has to move the heads to the appropriate track.
3. Settle time. The heads have to stabilize on the (very narrow) track.

4. Rotation time. The platters have to rotate to the position where the data is lo-
cated.

5. Transfer time. The data has to be read and transmitted back across the intercon-
nect into system memory.

Given that the question asked about moving from one location to another and did
not mention the operating system or performing an action that would require trans-
ferring data, answers that only included seek time, settle time and rotation time are
acceptable, and potentially even more correct.

Sources of latency are seek time (major), settle time (minor), rotation time (minor). An
answer that only identified seek time as a major source of latency is acceptable.

3/20




CSE421 Final Exam Solutions 07 May 2012

3. (5 points) Describe how filesystem journaling works:

e What is written to the journal?

e How is the journal used after a crash to quickly return the filesystem to a consis-
tent state?

Solution:

A filesystem journal should record all changes to the filesystem state and data struc-
tures. The only exception to this inclusivity is data blocks, which can be written to the
journal or may not be. (In the latter case the filesystem may lose data after a crash but
should still maintain consistency:.)

Examples of changes always recorded in the journal would be data block and inode
allocation, changes to inodes, changes to internal data structures such as inode or data
block allocation bitmaps, and changes to the superblock.

Checkpoints are written to the journal periodically and indicate that all changes
recorded previously have been written to disk. When a crash occurs, the filesystem
uses the journal to recover a consistent state. It does this by scanning the journal start-
ing at the latest checkpoint and looking for uncommitted operations: those that are
written to the journal but not to disk. Once all uncommitted operations have been
flushed to the disk, the filesystem should be in a consistent state and can resume op-
eration.

4 /20



CSE421 Final Exam Solutions 07 May 2012

4. (5 points) Identify the difference between a write-through and write-back block-level
tilesystem buffer cache. Which is better for safety? Which is better for performance?

Solution:

A write-through cache does not buffer writes. Instead, they are passed through to the
disk immediately. Write-through caches improve read performance—reads still hit
the cache—but do not improve write performance. However, they are safer as all
write operations are on disk as soon as possible.

A write-back cache does buffer writes. Modifications are not written to disk until blocks
are evicted. (Write-back caches may also write data in the background or ensure that
blocks are flushed after some configurable delay.) Write-back caches provide faster
write performance but are less safe, as modifications may not be lost in the cache if a
failure occurs.

5/20



CSE421 Final Exam Solutions 07 May 2012

5. (5 points) List several of the impacts that micro-kernel design and development has
had on modern monolithic operating systems.

Solution:

1. Increased attention to what really belongs in the kernel and what doesn’t. This
doesn’t always work out in practice in monolithic kernel, but it’s useful to think
about.

2. Work on very fast inter-process communication (IPC). Since microkernel’s live
and die by the speed of process-to-process transitions and communications, this
is an area where they focused their efforts.

3. Attention to interfaces between kernel components. Monolithic kernel can bene-
tit from clean, well-designed interfaces between core components even if every-
thing runs in the same address space.

6 /20




CSE421 Final Exam Solutions 07 May 2012

6. (5 points) Define Amdahl’s Law and describe how it guides the process of perfor-
mance improvement.

Solution:

We discussed two different formulations of Amdahl’s Law:

The impact of any effort to improve system performance is constrained by
the performance of the parts of the system not targeted by the improve-
ment.

Ignore the thing that looks the worst and fix the thing that is doing the most
damage.

We also had our corollary to Amdahl’s Law:

The more you improve one part of a system the less likely it is that you are
still working on the right problem!

Amdahl’s Law informs performance improvement in a variety of ways. It says that
if you aren’t working on the right problem, you aren’t going to accomplish much,
meaning that it’s essentially to figure out what the right problem is. It also implies that
once you've made an improvement, you need to reassess because another part of the
system may now be your bottleneck.

7/ 20



CSE421 Final Exam Solutions 07 May 2012

7. (5 points) Assuming full hardware virtualization, describe how an application-generated
TLB fault is handled by the guest operating system. Assume that this virtual machine
architecture supports a software-managed TLB, and that the page causing the fault is
already resident in the virtual machine’s memory.

Solution:

1. The original TLB fault happens in the virtual machine (VM). Control immedi-
ately jumps to the host operating system.

2. The host notices that the fault has occurred in the VM and delegates handling of
the fault to the virtual machine monitor (VMM).

3. The VMM notes that this as a TLB miss which must be handled by the guest OS,
and vectors control to the guest operating system’s TLB fault handling code.

4. The guest OS will begin executing believing that the original TLB fault vectored
control to it immediately. It will look up the correct translation for the process
running in the VM that generated the fault and attempt load it into the TLB.

5. The attempt to load the TLB by the guest OS will generate another fault because
it is not running in privileged mode. This second fault will again be vectored by
the host OS to the VMM.

6. The VMM will inspect the TLB write and deem it to be safe if the physical ad-
dress that the translation points to is physical memory allocated to the VM. In

this case, the TLB modification will complete, and the process running inside the
VM will be restarted.

8/ 20



CSE421 Final Exam Solutions 07 May 2012

Medium Answer

Choose one of the following two questions to answer. Please do not answer both ques-
tions. If you do, we will only read one.

Complete this question on the scratch paper attached to the back of the exam. Clearly
label your answer.

8. (20 points) Label your medium answer as Question 8.

Virtual Machine fork ()

You know all there is to know about fork (), of course, but your boss at your new software
development job just discovered fork() and thinks it is just the coolest thing. Unfortu-
nately he also just learned about virtual machines (the second coolest thing), and has
hatched a plan to combine the two. Or, to put it accurately, his plan to combine the two is
to ask you to implement an analog to fork () but one that forks virtual machines instead of
processes.

First, describe virtual machine fork () at a high level. Who would implement virtual ma-
chine fork ()? How would they do it? Identify several significant differences between vir-
tual machine fork() and process fork() arising from the differences between processes
and virtual machines. (You may want to think about the rest of the process-related sys-
tem call interface—exec (), exit (), and wait ()—and consider there are virtual machine
analogs to these process operations as well.)

Second, explain why this may or may not be a good idea. You may want to consider use
cases and overheads.

Solution:

At a high level, virtual machine fork() is similar to process fork(): the virtual ma-
chine the called fork() is stopped, a new virtual machine is created that is a copy of
the machine that called fork(), and both virtual machines are restarted. We create the
copy in in a similar way to the way that we copy address spaces in process fork(),
except that the mappings that need to be copied are guest OS physical — host OS
physical rather than process virtual — physical.

The differences begin to emerge, however, after we consider who and how virtual ma-
chine fork() would be implemented. Because this is an operation that acts on the
virtual machine, it would have to be added as a hardware feature and implemented by
the Virtual Machine Monitor (VMM). Thus, users of the virtual machine would have
to be made aware of this feature, and this awareness itself would pierce the virtual
machine.

In addition, since processes are themselves an abstraction, process fork() can “copy”
the process abstraction. But physical machines—which the virtual machine is trying

9/20



CSE421 Final Exam Solutions 07 May 2012

to copy—are not abstractions, and cannot be instantly copied, and so virtual machine
fork () must “pierce” the virtual machine. Thus, on some level virtual machine fork ()
is fundamentally incompatible with full virtualization, which we discussed in class.
Paravirtualization—which requires changes to the operating system code that make
it aware of the virtual machine monitor hypervisor—is a better fit for this abstraction.
(You are not be expected to have mentioned paravirtualiation since we did not cover
it in lecture.)

Other differences fall out when we examine the rest of the process-related system calls.
Given the idea we presented of a virtual machine, many of the features of the process
system calls designed to enable communication between processes don’t really make
sense, since a fully-virtualized virtual machine is not suppose to provide its guests any
idea that there are other virtual machines using the same physical machine. (This is
the definition of piercing the VM.) So support wait () /exit () semantics, for example,
would require fundamentally altering what VMs are expected to know about their
world.

As far as evaluating this idea, you need to consider what it costs and what it would be
used for. Copying an entire virtual machine is potentially very expensive, since all of
the operating system code must be copied along with the state of every running ap-
plication. On the other hand, it is exactly that copying of the entire state of the virtual
machine that makes virtual machine fork() potentially useful. So, for example, an
application distributed across multiple machines could create (and destroy) new vir-
tual machines as demand fluctuated. The new virtual machines would benefit from
not having to boot or restart many applications, which could take significant amounts
of time.

Besides the cost, another limitation of virtual machine fork() is simply the lack of
good inter-virtual-machine communication mechanisms analogous to IPC for multi-
ple processes. Many times parent-child pairs want to communicate in order to do
useful work, with the parent calling process fork() and then telling the child what it
should do, for example. There will also likely be complications concerning the state of
the machine that cannot be copied—hardware addresses like the NIC MAC addresses,
the IP address that the machine has established—and other things that might depend
on this state, such as open TCP connections, which depend on the IP address.

10 / 20



CSE421 Final Exam Solutions 07 May 2012

Log-structured File Systems on Flash Drives

Flash drives have very different performance characteristics than spinning disks. One
important difference is that, because Flash drives contain no moving parts, latencies for
access to different locations on disk are roughly constant.

Flash drives do, however, have drawbacks. One concerns how writes are performed. In
order to write a byte to a block on a Flash drive you must first erase the entire erase unit
that contains it, which are usually quite large. Given an erase unit of 16 Kb, the process
of modifying a single byte becomes:

e Read the entire 16 kB erase unit into memory in order to preserve the unmodified
contents across the erase.

Change the byte we want to change in our cached copy in memory.

Erase the erase unit.

Write the entire modified erase unit back to the Flash drive.

The other important characteristic of Flash drives is that the individual erase units can
only be erased a fixed number of times, making it important to try and even out the
usage of different portions of the disk.

It seems like it’s time for log-structured filesystems to make a comeback, and maybe Flash
drives are the place! Let’s think this through. Begin by explaining why this may seem like
a questionable choice by identifying the key benefit of log-structured filesystems on spin-
ning disks that is lost on Flash. But continue by discussing how log-structured filesystems
might help address the two challenges of Flash devices outlined above.

Solution:

Recall that the big benefit of log-structured filesystems was that by performing all
writes to the log they reduced the seek time for writes, which tend to dominate disk
traffic if we assume that many or all reads are absorbed by large buffer caches. (Log-
structured file systems were born into the world of growing main memory sizes but
stubbornly-slow disks.) On Flash drives this argument makes no sense, since there
are no moving parts and no seek times, so the advantage of performing all writes to
the same location on the disk is lost.

However, what is not lost is the other advantage of performing all writes to the same
location, which is that the filesystem can aggregate the writes in the cache and perform
a bunch of writes all at once to the same location. On Flash drives, this allows the
tilesystem to hold all writes to the same erase unit until the entire erase unit is full,
at which point it can be erased and rewritten as a single chunk. (This is what has to
happen anyway.)

To use an example, suppose we have 16 writes to perform that together will fill up an
erase unit. On a traditional filesystem on Flash, those 16 writes will—barring some

11 /20



CSE421 Final Exam Solutions 07 May 2012

other clever technique—land in 16 separate erase units, causing each erase unit to
have to be read into memory, erased, and then rewritten with on average {:-th of the
erase unit modified. Using a log-structured file system, assuming a clean erase unit
all writes will land in the same erase unit, causing a single erase and rewrite cycle.

Logs can also address our wear-leveling challenge as well. Ignoring log cleaning tem-
porarily, which I know is a stretch, you would expect the log to simply rotate across
the disk at the speed of ongoing write traffic, evening out writes to the highest de-
gree possible. And there are probably clever ways to clean the log as well that also
evenly-distribute write traffic.

Both advantages above share a similar structure. Log structured file systems improve
write locality. On spinning disks this helps with seek time. On Flash drives, this
means the disk can perform fewer writes and also can exercise more control over where
those writes go, leading to longer happier Flash disk lifetimes.

12 /20



CSE421 Final Exam Solutions 07 May 2012

Long Answer

Choose two of the following three questions to answer. Please do not answer all three
questions. If you do, we will only read the first two.

Complete this question on the scratch paper attached to the back of the exam. Clearly
label your answer.

9. (25 points) Label your first long answer as Question 9.

10. (25 points) Label your second long answer as Question 10.

Application Prefetching

Recall that on systems that use demand paging, page contents are not loaded into mem-
ory when the process address space is initialized during exec(). Over the lifetime of
a process, this procrastination-based technique has significant benefits. In particular,
pages containing code that is never executed by the application are never paged in to
or swapped out of memory.

One potential downside, however, of demand paging is that when an application first
begins executing it generates a large number of page faults to bring the code and libraries
it does use in from disk. Application prefetching is a technique supported by several
modern operating systems to reduce application startup times on systems with big, slow,
spinning disks by using the past to predict the future.

First, assuming that the code pages needed by the application as it loads are scattered all
over the disk, describe the potentially deleterious consequences of performing these I/O
requests in the order the process generates them on a large, spinning disk.

Second, explain why operating systems can accurate predict an application’s startup I/O
requests. To answer this question, you might consider what is fundamentally different
about the first few seconds of an application’s execution from other time periods and
how that would make its I/O patterns more predictable.

Finally, use these two observations to design application prefetching.
1. Explain what information you need to know about an application to prefetch effec-
tively and how to collect that information.

2. Describe what happens when a prefetched application begins running and how it
differs from a non-prefetched application.

3. Present an argument as to why your prefetcher improves application startup perfor-
mance.

13 /20



CSE421 Final Exam Solutions 07 May 2012

Solution: Application Prefetching

First, the potentially “deleterious” (a.k.a, bad) consequences of on-demand pag-
ing during program startup is that, assuming the code pages that it needs to ini-
tialize are distributed randomly across the disk, the disk head will be sent on
a random walk across the platter, incurring high overheads for each successive
seek.

Second, the key insight that enables application startup prefetching is that, while
demand paging patterns during interactive program execution are inherently
unpredictable—they depend on what the user is doing—the first few seconds of
interactive program execution are highly-predictable. During this time the pro-
gram is loading libraries, performing initialization routines, and generally doing
ignoring the user while it prepares itself to run. For some applications—think of
Adobe PhotoShop—this phase can continue for quite some time.

Finally, we design an application prefetcher as follows. What we need to know
is all of the disk I/O’s that a process will generate during the first phase of pre-
dictable execution. We can collect this information by profiling the application
during startup time. This profiling phase can also be used to identify how long
the predictable initialization period is by comparing successive executions of the
same binary program. We store this information in a prefetch file for each applica-
tion.

When a prefetched application begins running, rather than allowing it to demand-
fault each page in, we use the prefetch file to prefetch all of the code and li-
brary pages it will need during its initialization period. So, in contrast to a non-
prefetched application, a prefetched application will generate page faults during
initialization. Instead, it should find these pages in memory. Of course, this is
transparent to the process (modulo timing), since TLB faults will still occur but
simply not generate page faults since the pages all already resident in memory.

The argument that this improves performance is fairly simple to construct and
relies on an understanding of disk head scheduling. Presented with single,
randomly-located I/O requests, the heads perform their random walk and perfor-
mance suffers. Presented with a large number of I/O requests, the head scheduler
can sort them and do a single pass across the platter, collecting all of the required
data on the way. This is much faster, and the Windows prefetcher was able to
reduce startup times of large applications significantly. (The same technique was
applied to Windows boot as well, with similar results, bringing us ever-closer to
the system that takes zero time to reboot.)

14 / 20



CSE421 Final Exam Solutions 07 May 2012

Asynchronous System Calls

Throughout the semester we have considered system calls as being synchronous, or block-
ing: when a process performs a system call, it is blocked until the call completes. How-
ever, modern operating systems also support asynchronous, or non-blocking, system calls.
These allow a process to request the operating system perform some action on its behalf
while not requiring the process wait for the action to take place.

First, considering the system calls we have discussed throughout the semester, describe
several cases in which asynchronous system calls would be useful and how. Conversely,
describe several synchronous system calls that lack a meaningful asynchronous analog.

Second, describe any changes to the operating system interface that might be necessary to
support certain asynchronous system calls. Discuss any additional application program-
ming challenges that non-blocking system calls may introduce.

Third, briefly explain how a process that can fork multiple threads can emulate asyn-
chronous system calls without true non-blocking support from the operating system. De-
scribe the overheads to this approach that might make native asynchronous system calls
preferable.

Finally, describe the kernel changes necessary to support asynchronous system calls.
Walk through the steps required to complete a non-blocking call, describing what hap-
pens at both the process and kernel level.

15/ 20



CSE421 Final Exam Solutions 07 May 2012

Solution: Asynchronous System Calls

1. Asynchronous system calls are particularly useful when performing I/0. A
process can issue read () and write() calls without waiting for those calls to
complete, allowing it to go about other business while waiting. (This can be
particularly useful when implementing so-called event-based programming
frameworks, which provide an alternative to the multi-threading program-
ming model most of us are more familiar with.)

Another case of a system call that is not I/O-related that has a meaningful
asynchronous analog is waitpid(). Here it is helpful to allow the parent
process to return immediately if the child process has not exited. We refer
to a process repeatedly checking on a result, as it would be calling an asyn-
chronous non-blocking waitpid (), as polling.

Several system calls, however, really don’t make much sense asynchronously.
What does it mean to do an asynchronous exec() or fork()? In the former
case, the process just returns and can run for a bit longer before it is replaced
by a new image. This doesn’t seem useful. With fork() you have the prob-
lem that the parent wants to create a copy at a well-defined moment, and
allowing it to return and continue running would complicate that process.
(You could do this though, if you were careful, but again the use case doesn’t
seem obvious.)

2. Let’s focus on the I/0O related asynchronous calls, particularly read() and

write(). What would we need to add in order to allow the process to return
immediately? The first thing is that we need to provide a way for the process
to determine when the call has completed. One way is to provide some addi-
tional system call that a process can use to poll for a pending I/O request;
another way is for the operating system to send the process a signal when
the requested I/O completes.
The reason that this additional signaling mechanism is required is that the
process must not modify or interpret the write() or read() buffer until the
non-blocking call completes. This requirement also creates a new concurrent
programming challenge which the application designer must deal with. With
a blocking system call, there is no way for the process to see a read() in an
incomplete state; with a non-blocking call it can, and care must be taken to
ensure that it does not assuming the correctness of the program depends on
it. (It probably does; imagine a web-server that served pages that had not
been completely read from disk.)

3. If a process can create threads visible to the kernel it can emulate asyn-
chronous calls. When a thread wants to perform a blocking system call, it
forks a new thread specifically for this task. That second thread blocks across
the system call while the original thread continues to run. When the call
completes, the thread that was forked to perform the call exits.

16 / 20



CSE421 Final Exam Solutions 07 May 2012

The problem with this approach is that there can be a potentially high over-
head to forking threads that are visible to the operating system kernel. Note
that user-only threads are not appropriate for this purpose. It would be great
if they were, because the overhead of forking a user thread is significantly
lower, but because they are not visible to the operating system a user thread
that blocks will stop the entire process and negate the objective we were try-
ing to achieve.

4. When a process performs a non-blocking call, assuming the arguments are
correct and the read () or write () can be initiated, the kernel can fork a sep-
arate kernel thread to complete the request, allowing the calling thread to
return to user mode. The delegated kernel thread is queued to wait for the
I/0O to complete. When it awakens, it must take any actions necessary to
notify the process that the asynchronous I/O has completed: marking it as
done in a data structure that the process can poll or sending the process the
appropriate signal. Kernel threads used for this task may be created when
non-blocking calls begin and destroyed when they are complete, or they may
be part of a dedicated kernel thread pool and recycled across subsequent calls.

17 / 20



CSE421 Final Exam Solutions 07 May 2012

Operating System Transactions

Transactions are a database concept and, for the purposes of this problem, can be defined
as a set of actions that must be atomic, consistent, isolated and durable. (Together these
requirements are known as ACID semantics.) We will focus on two of the ACID proper-
ties: atomicity and isolation. Atomicity requires that transactions either either all succeed
or all fail. Isolation requires that the changes made by a single transaction not be visible
in an intermediate state.

Traditional operating systems interfaces do not provide support for transactions spanning
multiple system calls. TxOS, a new research operating system developed at the Univer-
sity of Texas, asserts that adding transaction support will help solve a number of com-
mon operating system problems. One common problem is helping keep multiple related
tiles synchronized—adding a user to a UNIX system requires changes to /etc/passwd,
/etc/shadow and /etc/group, and certain utilities may fail if they read these files during
an update and find inconsistent state: a user without a password during user creation, or
a group containing a user that does not exist during user deletion.

First, describe how one of the two cases above can occur. List the system calls in pseudo-
code for the two processes involved and how they would interleave in time leading to
one process viewing inconsistent state. You can assume that both adding and removing a
user requires modifications to all three files mentioned.

Second, describe a solution that provides support for transactions consisting of multiple
modifications (via write()) to one or potentially multiple files. (This is much easier than
providing transaction support for the entire filesystem or operating system interface!) As-
sume that we have added two new system calls sys_xbegin() and sys_xend () delineating
the beginning and end of a single transaction. Your solution should meet the following
design requirements ensuring atomicity and isolation:

1. Any writes to files made by a process after calling sys_xbegin () should not be visible
until that process calls sys_xend ().

2. Any files modified by the transaction can only be modified if they are in the same
state when the process calls sys_xend () as they were when it called sys_xbegin().
You must ensure this by either preventing them from being changed, or by aborting
the transaction if you detect that changes have occurred.

3. To achieve good performance you should attempt to keep any locking as fine-grained
as possible.

4. Ttis acceptable, and a property of many good solutions, to fail transactions, but there
should be reasonable conditions under which a reasonable transaction can succeed.
(Definitions of reasonableness are yours to provide.)

Finally, explain how operating system transactions might be useful when updating sys-
tem software.

18 / 20



CSE421 Final Exam Solutions 07 May 2012

Solution: Operating System Transactions

1. A user without a password during user creation. The process creating the
user writes the entry to /etc/passwd. Another process reads /etc/passwd
and finds the entry for the user but does not find an entry in /etc/shadow.
Finally, the process creating the user writes an entry to /etc/shadow.

2. A group containing a user that does not exist during user deletion. The
process deleting the user removes the user entry from /etc/passwd (and
/etc/shadow). Another process reads /etc/group and finds a group con-
taining the user but does not find the user in /etc/passwd or /etc/shadow.
Finally, the process deleting the user removes the user from all groups in
/etc/group.

There may be multiple ways to design solutions for this question. Here is the one
we had in mind.

When a process calls sys_xbegin(), the operating system (1) notes the time that
the transaction began and (2) marks that the process is performing a write trans-
action. Saving the transaction start time is critical later to determine whether files
have been modified after the transaction started which should cause the transac-
tion to abort.

When a transaction is in process and a process calls write () on a file for the first
time, the operating system first checks whether any other writes have occurred to
that file (by other processes) since the transaction began. If the answer is yes, we
must abort the transaction as we have violated our atomicity property.

If the answer is no, we must first flush any dirty buffer cache blocks for this file
and then lock the file for the process in the transaction, preventing future writes
and reads to the file until the transaction completes. In order to abort cleanly, we
will also buffer all writes during the transaction in the buffer cache. In case of
abort, we will simply drop all buffers associated with the transaction, returning
all files to their on-disk state, or the state that they were in when the transaction
began, ensuring atomicity.

When files are locked by a process performing a transaction, other writes and
reads from other processes will be delayed until the transaction completes. On
some level this seems to enable out-of-order writes, but in reality we are creat-
ing the illusion to other processes that all of the writes occurring as part of the
transaction occur at the same time and at the time that the call to sys_xbegin() was
made. We could even adjust the file modification times appropriately. Reads must
be stopped to prevent other processes from seeing modifications to the files that
have not been committed yet. (An alternate—and more clever—solution would
allow the reads to complete but provide data consistent with the start of the trans-
action.)

19 /20



CSE421 Final Exam Solutions 07 May 2012

When the process performing the transaction calls sys_xend(), we (1) flush all
dirty buffers written as part of the transaction to disk and (2) drop all file locks
that the process has acquired.

Returning to our requirements and suggestions, we note that our solution meets
them. We meet the modification requirement through two mechanisms: aborting
on the first write if the file has been changed after the transaction, and locking
after the first write. Part of the difficulty here that causes us to have to sometimes
abort is that we do not know what files the process will use during the transaction
when the transaction starts. If we did, we could grab all the locks up front. Since
we don’t, we grab the lock as early as possible.

Second, we keep our locking as fine-grained as possible by locking on the file
level. Grabbing one big filesystem wide lock is not a solution that is going to earn
a lot of points for this question, although it is a potential solution and so will earn
some points. You should be able to do better than that!

Note that we will fail transactions in certain cases, with the likelihood of failure
rising as the number of files, number of modifications and “length” (in time) of
the transaction rises. The more time that passes between the initial sys_xbegin()
and the transaction-initiating process’s first access to a file, the higher the chance
that another modification has occurred during that time. So our expectation is
that transactions involving small numbers of changes to a few files will succeed
often under normal load.

Finally, operating system transactions are useful when installing system software
because an entire set of related changes can be performed and, if one package fails,
the system can be rolled back to its pre-installation state. Without transaction,
what usually happens is that bits and pieces of the failed installation are left ev-
erywhere, potentially complicating future software package installations. Many
systems support other mechanisms to try and address this specific problem—Iike
Windows checkpoints—without implementing full operating system transaction
support.

20/ 20



