
Name:

UB ID Number:

Question: 1 2 3 4 5 6 7 Total

Points: 5 5 5 5 5 5 20 40

Score:

CSE421 Practice Midterm

This practice midterm is intended to familiarize you with the kind of problems that will
appear on the actual midterm exam. The only significant difference is that this exam does
not contain any multiple choice questions. The real midterm will contain 10 multiple
choice questions worth 1 point each. These are drawn entirely from the lecture slides and
intended to be very easy.

The point value assigned to each question is intended to suggest how to allocate your
time. So you should work on a 5 point question for roughly 5 minutes. Each of the short
answer questions are worth 5 points. The long answer question is worth 20 points.

We will work through the answers to this exam together in class. If you have time before-
hand, you may want to sit down and devote 40 minutes to working through answers to
the following problems.

Please fill out your name and UB ID number above. Also write your UB ID number at the
bottom of each page of the exam in case the pages become separated.

I have neither given nor received help on this exam.

Sign and Date:

1



Short Answer

Choose 4 of the following 6 questions to answer. You may choose to answer additional
questions, in which case you will receive credit for your best four answers.

1. (5 points) Explain the tradeoffs inherent to the scheduling quantum length. What
happens when it gets very short? What happens when it gets very long?

2



Segment Base Segment Bounds Physical Offset Permissions

1,000 450 500 Read
130,000 11,000 20,000 Read, Write
83,000 2,000 1,000 Read, Write

2. (5 points) Using the segmentation base and bounds table for the currently running
process above, describe what would happen if each of the following pseudo-instructions
were executed.

Note: to make things easier on everyone the question uses base-10 arithmetic.

1. load 1,200

2. store 140,000

3. load 36,788

4. load 84,100

5. store 1,000

3



3. (5 points) One disadvantage of multi-level page tables is that the page table data
structures themselves are fairly large. Assuming a two-level page table using 4K
pages and 32-bit addresses, the top-level and second-level page tables are each them-
selves 4K: 4 bytes per entry * 210 entries per table. If a process allocates many pages
spread over its virtual address space, the page tables can become large.

A potential solution to this problem is to swap the page tables, or move the top- and
second-level page tables themselves to the swap disk. This approach can reduce the
amount of memory in use. However, what difficulties can it cause?

4



4. (5 points) Explain the process of swapping out a page.

5



5. (5 points) 32-bit wide virtual addresses allow a process to address at most 4GB of
memory. On certain architectures, such as the MIPS, a portion of that is reserved for
use by the kernel, further reducing the potential size of the process virtual address
space to 3GB or 2GB.

Today, however, many machines ship with 8GB, 16GB or more memory. Explain how
you might support larger amounts of memory and the implications of any ideas you
propose. You may also argue why the existing address spaces might not be such a
serious limitation.

6



6. (5 points) Explain how multi-level feedback queues (MLFQ) can starve processes.
Propose one solution that addresses this problem.

7



Long Answer

Choose 1 of the following 2 questions to answer. Please do not answer both questions.
If you do, we will only read one.

If you need additional space, continue and clearly label your answer on the back of this
or other exam sheets.

7. (20 points) Choose one of the following two questions to answer:

1. Optimizing fork().
fork() is an expensive system call. A significant component of that expense is
copying the address space of the parent process, which is frequently rendered
unnecessary by the child immediately calling exec() and destroying the copied
address space.
Propose an optimization to fork() motivated by this observation. Your solution
should improve the performance of fork() followed by exec() but still provide
private memory to the child in the case that fork() is not followed by exec().
You might want to use one of our system design principles as inspiration: if you
wait to do something, you might never have to do it!

2. Priority inversion.
Priorities are intended to allow the user or system to express the importance of
threads to the scheduler. Some schedulers use priorities as hints, but some use
them strictly: a runnable high-priority thread will always preempt a runnable
lower-priority thread.
This can create problems when combined with synchronization primitives. Con-
sider the following scenario. A system has three threads: one high-priority
thread, a second medium-priority thread, and a third low-priority thread. In ad-
dition, the system has a single shared resource protected by a lock. Any thread
can lock and unlock this shared resource, and the resource is non-preemptible,
meaning a thread that tries to acquire the resource while it is in use will have to
wait for the thread that is using the resource to finish and release the lock.
First, identify one situation that would cause the high-priority thread to become
blocked indefinitely waiting on the low-priority thread. We call this state priority
inversion because it violates the goal of our strict priority scheduler. Second,
propose a scheduling solution to this problem.

8



Scratch. Please indicate what question you are answering.

9



Scratch. Please indicate what question you are answering.

10


