
CSE421 Midterm Solutions
—SOLUTION SET—

09 Mar 2012

This midterm exam consists of three types of questions:

1. 10 multiple choice questions worth 1 point each. These are drawn directly from
lecture slides and intended to be easy.

2. 6 short answer questions worth 5 points each. You can answer as many as you want,
but we will give you credit for your best four answers for a total of up to 20 points.
You should be able to answer the short answer questions in four or five sentences.

3. 2 long answer questions worth 20 points each. Please answer only one long answer
question. If you answer both, we will only grade one. Your answer to the long
answer should span a page or two.

Please answer each question as clearly and succinctly as possible. Feel free to draw pic-
tures or diagrams if they help you to do so. No aids of any kind are permitted.

The point value assigned to each question is intended to suggest how to allocate your
time. So you should work on a 5 point question for roughly 5 minutes.

CSE421 Midterm Solutions 09 Mar 2012

Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) In the story that GWA (Geoff) began class with on Monday, March 4th, why was
the Harvard student concerned about his grade?
© He never attended class. © He never arrived at class on time.

√
He

usually fell asleep in class. © He was using drugs.

(b) All of the following are inter-process (IPC) communication mechanisms except
© shared files. © exit codes. © pipes.

√
non-uniform memory.

(c) New processes are created by calling√
fork(). © exec(). © create(). © new().

(d) What does exec() do to the process file table?
© Copies it. © Opens STDIN, STDOUT and STDERR.

√
Nothing. © Re-

sets it.

(e) What MIPS instruction is used by the kernel to return to userspace after handling
an exception?√

rfe © lw © syscall © addiu

(f) Which of the following is not a requirement for deadlock?
© Multiple independent resource requests.

√
A linear dependency graph.

© Protected access to shared resources. © No resource preemption.

(g) Which of the following is not an example of an operating system policy?
© Deciding which thread to run. © Giving preference to interactive tasks.√

Using timer interrupts to stop a running thread. © Choosing a thread to
run at random.

(h) When using our computers, normal users are generally not actively aware of
© responsiveness. © continuity.

√
resource allocation. © interactiv-

ity.

(i) Con Kolivas is
© the maintainer of the Linux scheduling subsystem. © a Turing award
winner. © opposed to the use of profanity.

√
an Australian anaesthetist

and Linux hacker.

(j) Address translation allows the kernel to implement what abstraction?√
Address spaces. © Files. © Threads. © Processes.

2 / 14

CSE421 Midterm Solutions 09 Mar 2012

Short Answer

Choose 4 of the following 6 questions to answer. You may choose to answer additional
questions, in which case you will receive credit for your best four answers.

Virtual Page Number Physical Page Number Permissions

98 119 Read
2 120 Read

Table 1: TLB.

Virtual Page Number Location Address Permissions

98 Memory 119 Read, Write
0 Memory 12 Read, Write
2 Memory 120 Read
3 Disk 2 Read, Write

Table 2: Process Page Table. Each entry corresponds to a PTE.

2. (5 points) Using both the TLB (Table 1) and page table (Table 2) for the running pro-
cess above, describe what would happen if each of the following pseudo-instructions
were executed. In particular, make sure to identify any TLB or page faults. Assume
this (fairly weird) machine uses 1000 byte pages.

Note: to make things easier on everyone the question uses base-10 arithmetic.

Solution:

1. load 2378→ load 120378

2. store 98733→ TLB fault (entry marked read-only), store 119733 (entry marked
read-write in PTE).

3. load 36788→ TLB fault (entry missing), page fault (no PTE). Kernel must either
kill this process or create a new PTE and load the TLB appropriately before the
instruction can continue.

4. load 143→ TLB fault (missing entry), load 12143 (PTE indicates that the page is
in memory).

5. store 3700 → TLB fault (entry missing), page fault (page is on disk). The oper-
ating system will load the page into a physical page and restart the instruction.
Note that the address in the PTE is a disk address, not a memory address. There is
no way to know the final translation given the information you were provided.

3 / 14

CSE421 Midterm Solutions 09 Mar 2012

3. (5 points) Identify and describe three serious problems with the code snippet be-
low. (You may want to use the line numbers to help identify the problems.) Assume
sharedStateLock and sharedStateCV have been properly initialized.

1
2 s t r u c t lock ∗ sharedStateLock ;
3 s t r u c t cv ∗ sharedStateCV ;
4 bool getGoing = f a l s e ;
5 i n t sharedSta te = 0 ;
6
7 void
8 fubar (i n t doubleRainbow)
9 {

10 / / Might a l r e a d y have t h e l o c k !
11 i f (! l o c k d o i h o l d (sharedStateLock)) {
12 l o c k a c q u i r e (sharedStateLock) ;
13 }
14
15 / / Wait t o g e t go ing ! Grab t h e l o c k t o p r o t e c t t h e s h a r e d s t a t e .
16 while (! getGoing) {
17 ;
18 }
19 l o c k r e l e a s e (sharedStateLock) ;
20
21 / / R e s e t s h a r e d s t a t e b e f o r e we make our c h a n g e s .
22 sharedSta te = 0 ;
23
24 l o c k a c q u i r e (sharedStateLock) ;
25 sharedSta te = doubleRainbow ;
26 l o c k r e l e a s e (sharedStateLock) ;
27
28 / / L e t e v e r y o n e know a b o u t t h e d o u b l e ra inbow !
29 c v s i g n a l (sharedStateCV , sharedStateLock) ;
30 return ;
31 }

4 / 14

CSE421 Midterm Solutions 09 Mar 2012

Solution to Problem #3

Solution:

1. Line 11: incorrect use of the lock interface. Method lock do i hold() is in-
tended to be private.

2. Line 15: busy waiting.

3. Line 15: if sharedStateLock really protects getGoing then getGoing can never
change while we are looping holding the lock! Otherwise, sharedStateLock
does not really protect getGoing. Either way, it’s a problem.

4. Line 22: resets sharedState after releasing the lock in Line 19.

5. Line 29: calls cv signal() without holding the lock.

6. Line 29: should call cv broadcast() to let everyone know about the double rain-
bow.

5 / 14

CSE421 Midterm Solutions 09 Mar 2012

4. (5 points) Give an example of (1) a hardware interrupt, (2) a software interrupt, and
(3) an exception. (Three examples total.) Briefly describe what happens when an
interrupt is triggered.

Solution:

• Hardware interrupt: disk read completes, network packet arrives, timer fires,
etc.

• Software interrupt: system call such as read(), write(), fork(), etc.

• Exception: divide by zero (our favorite!), invalid instruction, TLB miss.

When an interrupt is triggered the processor:

• enters privileged mode,

• records state necessary to process the interrupt,

• jumps to a pre-determined memory location and begins executing instructions.

6 / 14

CSE421 Midterm Solutions 09 Mar 2012

5. (5 points) First, from the perspective of the operating system, what is the difference
between interactive and non-interactive threads? Or, put another way, describe how
the operating system might try to guess whether a thread is interactive or not. Second,
describe how either multi-level feedback queues (MLFQ) or the Rotating Staircase
Deadline (RSDL) scheduler prioritize interactive threads.

Solution:

Interactive threads interact with the user and tend to spend a lot of time sleeping
waiting for user input. So the operating system might guess that a thread that spends
most of its time on the waiting queue (waiting for I/O to complete) is an interactive
thread. Conversely, a thread that spends most of its time using the CPU and not using
devices can, by definition, not be interacting with the user.

MLFQ preferences interactive threads by penalizing threads that use their entire CPU
quantum by lowering their priority. Threads that sleep before their quantum is com-
plete, as interactive threads frequently do, receive a priority boost.

RSDL preferences interactive threads in a similar way. Threads that consume their
quantum fall down the staircase, where they must compete for CPU time with lower-
priority threads. Threads that sleep frequently will usually not use their quantum
before a “major rotation” takes place, at which point they will return to their starting
priority during the next scheduling round. RSDL also produces a bounded waiting
time for threads at any level of the scheduler, which is great for interactivity.

7 / 14

CSE421 Midterm Solutions 09 Mar 2012

6. (5 points) Operating systems require special privileges to multiplex memory. Below,
describe:

• what special privileges are required,

• how they are used,

• and why they are needed.

Solution:

• What special privileges are required: the operating system controls the virtual
to physical address translations implemented by the MMU, either by loading
the TLB itself (software-managed TLB) or by controlling the page table entries
(hardware-managed TLB).

• How they are used: by controlling the indirection from virtual to physical ad-
dresses, the operating system can control what memory a process has access to
and prevent it from accessing memory it should not have access to.

• Why they are needed: the address space abstraction is private to each process
and IPC using memory sharing should require explicit cooperation by both pro-
cesses. Adding the virtual-to-physical level of indirection allows the kernel to
preserve the private nature of process memory.

8 / 14

CSE421 Midterm Solutions 09 Mar 2012

7. (5 points) Describe the tradeoffs surrounding memory page size. What happens when
pages become very small? What happens when pages become very large?

Solution:

When pages become very small, internal fragmentation decreases (good), the size of
kernel memory management data structures increases (bad), and the amount of mem-
ory that can be translated by a fixed-size TLB decreases (bad).

When pages become very big, internal fragmentation increases (bad), the size of kernel
memory management data structures shrinks (good), and the amount of memory that
can be translated by a fixed-size TLB increases (good).

9 / 14

CSE421 Midterm Solutions 09 Mar 2012

Long Answer

Choose 1 of the following 2 questions to answer. Please do not answer both questions.
If you do, we will only read one.

If you need additional space, continue and clearly label your answer on the back of this
or other exam sheets.

8. (20 points) Choose one of the following two questions to answer:

1. User- v. kernel-level multithreading. In class we focused our discussion of the
thread abstraction on kernel-level threads. However, a popular alternative is to
implement threads in userspace libraries. We refer to these threads as user-level
threads.
First, explain what a userspace library would need to do to implement the thread
abstraction. How are threads created? Where is thread state stored? How do
you perform a context switch? Can you implement preemption and, if so, how?
What support from the kernel, if any, is needed to accomplish these things?
Second, discuss the tradeoffs between implementing threads in userspace and
in the kernel. What’s potentially better about user-level threads? What’s poten-
tially better about kernel-level threads? Give one example of an application that
you argue would perform better using user threads and one application that you
argue would perform better with kernel threads.

2. System design principles. We have discussed a number of general systems de-
sign principles throughout the semester. As an example, when motivating on-
demand paging we introduced the idea that procrastination might be effective if
it allows the kernel to avoid doing things that it will never have had to do, such
as loading an unused code page into a process address space.
List three other design principles that we have discussed this semester. Explain
each design principle clearly and illustrate each principle with an operating sys-
tems example drawn from class. In addition, for each principle construct a new
example of its applicability not drawn from class. Your examples do not neces-
sarily have to be drawn from the world of operating systems or even the world
of computers, but those are good places to start.

10 / 14

CSE421 Midterm Solutions 09 Mar 2012

Solution: User-level threads.

Solution:

• Grading rubric.
This question was broken into 9 mini questions. Answering all 9 mini questions
received a full mark of 20 points. Answering 7–8 mini questions received 15
points. Answering 4–6 mini questions received 10 points. Answering 2–3 ques-
tions received 5 points. Demonstrating some understanding of what a thread
was received 2 points.

• How are threads created?
Very similarly to the way that they are created in the kernel. Imagine a library
routine userthreadfork() which is similar to threadfork() on OS/161 which
a user process would reach through a vfork() or clone() type system call.
userthreadfork() could either copy the state of the caller, like fork(), or take a
function pointer and arguments to begin execution, like threadfork().

• Where is thread state stored?
Instead of storing its state in kernel memory, as threadfork() does,
userthreadfork() stores thread state (registers and the stack) in user memory.

• How do you perform a context switch?
Again, this is very similar to the way it is done in the kernel. The only mean-
ingful difference is that the state is loaded and stored from or into user memory.
And in fact, the standard C library provides some support for saving and ma-
nipulating thread context via the setcontext family of functions.

• Can you implement preemption?
To some degree, yes. One example of how is for the thread scheduling library to
use signals generated by a periodic timer to stop currently-running threads and
perform user thread scheduling. Unlike kernel preemption, however, a lack of
privilege means that user threads must agree to not overwrite the process signal
handlers with their own code which could prevent the userspace thread library
scheduler from executing.

• What kernel support is needed?
Not much except for possibly timer-driven signals.

• Tradeoffs between user and kernel threads.
The tradeoffs primarily concern two properties of user-level threads: (1) they
do not require a kernel boundary crossing to create, but (2) they are also not
visible to the kernel. Because the process does not have to enter the kernel thread
creation, destruction, and scheduling may be much faster and more lightweight.
However, the process will be scheduled by the kernel as if it only had one thread,
and in addition a single thread in a multi-userthreaded application that performs
a blocking system call will block all threads until the call completes.

11 / 14

CSE421 Midterm Solutions 09 Mar 2012

For these reasons, multi-threaded applications that frequently spawn new threads
to perform short-lived tasks, particularly computational tasks, may do better
with a userspace threading library. An example might be a GUI application that
forks threads in response to user actions. These threads might not do much ex-
cept update some in-memory state and exit, and provide more of a conceptual
framework for programming the GUI. In this case, thread creation and context
switching are common threads will not be around long enough to need kernel
scheduling visibility.
On the other hand, multi-threaded applications that establish so-called “thread
pools” consisting of long-lived threads that do many more complex tasks involv-
ing I/O may benefit from the kernel’s knowledge of these threads existence and
the ability to do multiple blocking system calls concurrently. An example of this
kind of application might be a web server which creates a pool of threads that are
assigned to respond to incoming connections. Rendering a page requires a fair
amount of both computation and I/O, and because the thread pool is established
at the time that the webserver is launched creation and destruction are rare.

12 / 14

CSE421 Midterm Solutions 09 Mar 2012

Solution: Design principles.

Solution:

• Grading rubric.
5 points for one design principle with examples. 10 points for two design princi-
ples with examples. 15 points for three design principles but unclear or poorly-
explained examples. 20 points for three design principles with strong examples.
• Separate policy from mechanism.

An example from class is the separation of policy and mechanism in the operat-
ing system scheduling system. Mechanism consists of the process of performing
a context switch, allowing us to switch between threads, as well as using peri-
odic timer interrupts to force context switches to occur and guarantee that the
operating system will always regain control of the machine. Policy consists of
determining what threads to run in what order and for how long. Well-written
schedulers—such as the one in OS/161—allow the policy to be changed while
utilizing the same underlying mechanisms.
One of many examples not drawn from class is the movement towards software-
driven routers such as OpenFlow. Historically routers have intermingled policy
and mechanism, making their routing decisions difficult to control. New routers
try to cleanly separate the control and data plane to enable more flexible recon-
figuration. Here control and data map roughly on to policy and mechanism.
• Keep It Simple Stupid (K.I.S.S.).

An example drawn from class is the random scheduler or base and bounds ad-
dress translation. K.I.S.S. is intended to represent the idea of doing the sim-
pler thing first and then improving it as necessary, so another example would
be linked list page tables which may be simpler to implement than multi-level
tables and work well as long as the number of pages is small.
As a design principle, many of Apple’s products and their interfaces embody
this idea. Many iPod competitors were crowded with tiny buttons, mysteriously-
color LEDs and similar complex and inane “features.” Apple stripped the inter-
face down to its K.I.S.S. components which made it not only more powerful but
more beautiful. (Full disclosure—the iPod that my wife and I own is extremely
old and I do not consider myself an Apple fanboy. That said, why can’t other
computer companies manage to make attractive products? Is it so hard?)
• Use the past to predict the future.

An example drawn from class is our approach to thread scheduling. If we have
identified that a thread only uses the CPU in short bursts before sleeping, we
anticipate that it will continue to do that and take its past behavior into account
when scheduling it.
An example not drawn from class comes from the world of car insurance. When
you are in an accident, you will immediately pay more for insurance. The insur-

13 / 14

CSE421 Midterm Solutions 09 Mar 2012

ance provider is using your past behavior (you get into accidents) to predict the
future cost to insure you.
(Hopefully everyone got this one after we chanted it repeatedly in class like op-
erating system monks.)

• Use a cache. Or, put a small fast thing in front of a big slow thing to make it look
faster. An example drawn from class is using the TLB to cache address transla-
tions. The TLB can contain only a small number of the translations established
by the operating system but it is much, much faster.
An example not drawn from class is the tray of “freshly made” fast food out
under heat lamps at your favorite fast food restaurant. The “cache” holds fewer
burgers than the restaurant contains, but it is faster to grab one out from under
the lamps than to make one from “scratch”.

• Add a level of indirection. An example drawn from class is virtual to physical
address translation. Rather than allowing processes to access physical memory
directly, the operating system creates a level of indirection which provides the
kernel more control. References can be revoked or shared and the underlying
objects moved or altered.
An example not drawn from class is canonical name (or DNS name) to IP address
translation. Canonical names are not only more easy for humans to remember,
but they can be translated in a variety of ways, point to different physical ma-
chines at different times, or revoked from one owner and reassigned to another.

• Avoid doing things immediately you might never have to do. An example
drawn from class is on-demand paging. Instead of loading pages into the pro-
cess’s address space when the address space is laid during exec(), or when heap
is allocated using sbrk(), the kernel waits until the pages are referenced for the
first time by an instruction executed by the process. At that point it either loads
the page or creates a new page initialized to hold zeros.
I’m guessing that nobody had a hard time coming up with examples here. I’m
not going to share mine, however, since they are all things that I really should
have done when I was asked! (But eventually someone stopped asking or the
situation resolved naturally.)

14 / 14

