Name:

UB ID Number:

Question: 1 2 3 4 5 6 7 8 9 10 | Total
Points: 10 5 5 5 5 5 5 20 25 25 100

Score:

CSE421 Final Exam
06 May 2013

This final exam consists of four types of questions:

1. Ten multiple choice questions worth one point each. These are drawn directly from
second-half lecture slides and intended to be easy.

2. Six short answer questions worth five points each. You can answer as many as you
want, but we will give you credit for your best four answers for a total of up to
20 points. You should be able to answer the short answer questions in four or five
sentences. These are also drawn from second-half material exclusively.

3. Two medium answer questions worth 20 points each, also drawn from second-
half material. Please answer one, and only one, medium answer question. If you
answer both, we will only grade one. Your answer to the medium answer should
span a page or two.

4. Three long answer questions worth 25 points each, integrating material from the
entire semester. Please answer two, and only two, long answer questions. If you
answer more, we will only grade two. Your answer to the long answer question
should span several pages.

Please answer each question as clearly and succinctly as possible. Feel free to draw pic-
tures or diagrams if they help you to do so. The point value assigned to each question
is intended to suggest how to allocate your time. So you should work on a five point
question for roughly five minutes.

No aids of any kind are permitted.

Please fill out your name and UB ID number above. Also write your UB ID number at
the bottom of each page of the exam in case the pages become separated.

There are 11 scratch pages at the end of the exam if you need them. If you use them,
please clearly indicate which question you are answering.

I have neither given nor received help on this exam.

Sign and Date:

CSE421 Final Exam 06 May 2013
Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) Which of the following did not happen during lecture this semester?

(O We were temporarily locked out of Davis 101. (O All three Tims attended.
(O Geoff advertised a woodshop tool. (O We investigated a wine collection
in Berkeley.

(b) What could cause a head crash?

(O Throwing a Flash drive against the wall. () Tapping your fingers on your
laptop keyboard. (O Your desktop tipping over while running. (O Drop-
ping your laptop while it is off.

(c) Many operating system crashes are caused by
O devicedrivers. () page translation. () filesystems. (O applications.

(d) Which of the following is a useful approach to improving system performance?

(O Choosing a benchmark randomly. O Improving the parts of your code
that you just know are slow. (O Analyzing data from experiments to identify
bottlenecks. (O Working on the slowest part first.

(e) When your performance data has outliers, you should

O eliminate them. () assume they are experimental error. () understand
them. (O use a summary statistic.

(f) Modern filesystems are nothing like the Berkeley Fast File System (FFS).
(O True. (O False.

(g) A virtual address might point to all of the following except

O physical memory. (O adisk block. (O a port on a hardware device.
O aregister on the CPU.

(h) Address translation allows the kernel to provide all of the following except

(O the address space abstraction. (O process isolation. () an inter-process
communication mechanism. () direct access to hardware.

(i) Significant differences between filesystems include everything except

(O on-disk layout. (O reliable data storage. (0 data structures. (0 crash
recovery mechanisms.

(j) Which of the following is not a reason that virtualization became popular?

O Difficulty migrating software setups from one machine to another. () Use-
ful hardware virtualization features. (O Ability to reprovision hardware re-
sources as needed. (O Lack of true application isolation provided by tradi-
tional operating systems.

2/14 UB ID:

CSE421 Final Exam 06 May 2013

Short Answer

Choose four of the following six questions to answer. You may choose to answer addi-
tional questions, in which case you will receive credit for your best four answers.

2. (5 points) First, using appropriate terminology, describe the process of swapping out
a page. For each step, explain why it must be performed. Second, point out how the
operating system can reduce the overhead of this operation by planning ahead.

3/14 UB ID:

CSE421 Final Exam 06 May 2013

3. (5 points) List all the steps that are taken by a traditional hierarchical filesystem when
creating a new file. Assume that the file is not empty.

4 /14 UB ID:

CSE421 Final Exam 06 May 2013

4. (5 points) Identify two tradeoffs inherent in operating system memory management.
A tradeoff should involve a balance between providing two desirable properties. For
each,

e briefly describe cases in which the operating system would want to resolve the
tradeoff in favor of one of the desirable properties, and

e explain how balance is achieved during normal operation.

5/14 UB ID:

CSE421 Final Exam 06 May 2013

5. (5 points) Describe the difference between software- and hardware-managed TLBs
and how they affect kernel TLB and page fault handling. Briefly describe the pros
and cons of each approach.

6/ 14 UB ID:

CSE421 Final Exam 06 May 2013

6. (5 points) Define Amdahl’s Law and describe how it guides the process of perfor-
mance improvement.

7/ 14 UB ID:

CSE421 Final Exam 06 May 2013

7. (5 points) First, identify one way an instruction might fail to be “classically” virtual-
izable. Second, explain how this prevents the Virtual Machine Monitor from perform-
ing trap-and-emulate virtualization. Finally, briefly describe how modern virtual ma-
chine monitors work around this problem to perform full hardware virtualization.

8/ 14 UB ID:

CSE421 Final Exam 06 May 2013

Medium Answer

Choose one of the following two questions to answer. Please do not answer both ques-
tions. If you do, we will only read one.

Complete this question on the scratch paper attached to the back of the exam. Clearly
label your answer.

8. (20 points) Label your medium answer as Question 8.

Identifying Identical Pages

We discussed in class how operating systems use a technique called copy-on-write to al-
low identical virtual pages to be shared between the parent and child process after fork ().
Copy-on-write relies on the observation that fork() makes an identical copy of the par-
ent’s address space. So afterward, we know that for two virtual addresses in the parent
and child, VApsrent and VAcyi1q, it VAparent = VAgpila at the time fork() is called then
the pages have identical contents. Marking the shared page ready-only ensures that any
modifications by either process cause a page fault allowing the kernel to create private
copies of the now not-identical page.

While copy-on-write is a clever mechanism to use after fork(), it will not identify all
possible page sharing opportunities. First, explain why not. Second, describe a system
for identifying page-sharing opportunities missed by copy-on-write. Please be specific
about how your system works: how it identifies identical pages, how they are merged,
and how it ensures that pages that should be private stay private.

Finally, this approach emerged as a response to the increase use of virtualization technolo-
gies. Briefly explain why this is. Can you think of any other devices that would benefit
from your approach?

9/14 UB ID:

CSE421 Final Exam 06 May 2013

Controlling Virtual Machine Memory Usage

Virtual machine monitors typically require a substantial amount of memory in order to
create a virtual machine for the guest operating system. However, when running one or
multiple VMMs the host operating system may want or need to reclaim memory from
them. The process of reducing guest operating system memory usage is complicated by
the fact that the guest OS thinks that it has access to a entire large chunk of memory, the
amount presented to it by the virtual machine. But in reality the host OS will want to
reclaim memory from the guest OS.

In most cases the host operating system can directly swap out pages used by the virtual
machine monitor—an approach called hypervisor (another name for VMM) swapping.
However, hypervisor swapping can cause several potential problems. First, explain the
two following problems in more detail, including a description of why the would occur:

e The host OS may choose the wrong page.

e Under certain conditions pages may actually be swapped in and out twice. (As a hint,
consider what happens if the host OS has swapped out a page that is then swapped
out by the guest OS.)

Second, describe a solution that allows the guest and host OS to collaborate to reduce
guest OS memory usage. Keep in mind that the guest OS does not and should not know
that it is running inside a virtual machine. Instead, you should design a way for the
host OS to create memory pressure inside the guest OS and cause it to begin to evict
pages itself. Describe why this is a superior approach by discussing how it addresses the
weaknesses you identified above.

10 / 14 UB ID:

CSE421 Final Exam 06 May 2013

Long Answer

Choose two of the following three questions to answer. Please do not answer all three
questions. If you do, we will only read the first two.

Complete this question on the scratch paper attached to the back of the exam. Clearly
label your answer.

9. (25 points) Label your first long answer as Question 9.

10. (25 points) Label your second long answer as Question 10.

Incorporating FPGAs into Kernel Designs

Field-programmable gate arrays (FPGAs) are a form of reprogrammable hardware that
provide some of the flexibility of software (reprogrammability) and some of the speed
of hardware, with performance much better than general-purpose processors but worse
than specialized application-specific integrated circuits (ASICs). For the purposes of this
question we won't get into the details of how to program FPGAs, but you should keep in
mind that the speedup achieved by moving code from a general-purpose processor to an
FPGA may vary based on what computations are being done.

Describe how to modify an existing operating system to effectively utilize an FPGA incor-
porated into a system design. Your goal should be to harness the computational horse-
power of the FPGA to significantly improve application performance, while effectively
multiplexing this new hardware resource. Your system should be able to decide who can
use the FPGA but also help determine what they should be doing with it. There are some
design tradeoffs here that you should point out and decide how to balance. You may also
want to consider modifications to the executable-and-linking format (ELF) binaries we
have discussed earlier this semester to support FPGA incorporation.

You can make the following assumptions:

e The FPGA cannot effectively be space-multiplexed, i.e. it can be programmed to do
only one thing at a time.

e Reprogramming the FPGA takes time.

e Once the FPGA is reprogrammed, essentially a new instruction exists that can be
used by any thread running on the CPU to activate the FPGA to perform a custom
calculation (whatever it is programmed to do) based on inputs that could be drawn
from memory or processor registers. This also implies that applications do not have
to make a system call or involve the kernel to use the FPGA.

e The kernel has access to a program that can transform any binary code written for
the native instruction-set architecture (ISA) into code to run on the FPGA, but this
process has some overhead to it.

11/ 14 UB ID:

CSE421 Final Exam 06 May 2013

Deterministic Shared Memory Parallelism
(Credit for this question goes to Bryan Ford at Yale and his Determinator system.)

Earlier this semester we presented synchronization primitives as a solution to race condi-
tions, which we defined as cases where the ordering and timing of thread execution would
cause a result to be incorrect or unpredictable. (Remember the bank account example?)
Reasoning about how threads might interleave at runtime and the pattern of their ac-
cesses to shared memory has made multi-threaded programming difficult for years.

Part of the problem is that, when accessing shared memory, reads and writes from each
thread happen synchronously, meaning that if synchronization primitives are not used
correctly threads can observe variables in an inconsistent state. Consider the following
game-based scenario. During each time step, each actor in the game performs some action
and updates its position based on the position of all other actors. The game uses a separate
thread to perform the computation for each actor, but all threads read from and write to
a state table stored in shared memory. However, the position of an actor is defined as a
tuple in three-dimensional space, (x, y, z), and so requires three memory writes to change
and three memory reads to access, and so absent proper synchronization is not atomic.

The next page contains pseudo-code for the game described above. thread_fork you are
familiar with: it creates a new thread, in this case a new user thread. The thread _join
command will wait for the thread to complete before returning. It’s analogous to waitpid
but for threads, rather than processes.

First, describe how a race condition can occur if the table is not properly synchronized.
You should identify a condition where one thread will observe a shared variable in an
inconsistent state. Briefly, outline a solution to this problem that uses one of the synchro-
nization primitives we discussed in class. (Clearly, this is not the real question.)

Second, obviously the world would be a better place if every programmer used synchro-
nization primitives correctly. But the world is not that place, sadly, and so operating
systems may want to aid programmers by providing primitives that improve safety dur-
ing multithreading. Propose a solution to the race condition you identified above that
does not modify the application code above. Instead, you should confine your modifica-
tions to thread_fork and thread_join. As a hint, you might want to consider the design
and operation of the Git version control system that you have been using throughout the
semester.

12 /14 UB ID:

http://dedis.cs.yale.edu/2010/det/

CSE421 Final Exam

1

2 void update_actor(int i) {

3 // ... examine state of other actors
4 state[i].x = new_x

5 state[i].y = new.y

6 state[i].z = new_z

7)

8

9 int main() {

10 // ... initialize state of all actors
11 for (int time = 0; ; time++) {

12 thread t[NACIORS];

13 for (i = 0; i < NACIORS; i++) {
14 t[i] = thread_fork(update_actor, i);
15 }

16 for (i = 0; i < NACIORS; i++) {
17 thread_join (t[i]);

18 }

19 }

20 }

06 May 2013

13/ 14 UB ID:

CSE421 Final Exam 06 May 2013

Characteristic SSD HDD
Price-per-gigabyte $0.59 $0.05 (See note 1.)
Random access time 100 us 10 ms
Data transfer rate 100 MB/s 100 MB/s (See note 2.)
Durability No moving parts, resistant to shock Sensitive to shock and vibration

and vibration
1 For the 3.5 in form factor.
2 Once the head is positioned.

Table 1: Comparison of HDD and SSD disk drives.

Hybrid Disk Drives

Today disks are at a crossroads. Magnetic spinning drives still offer a order-of-magnitude
improvement in price-per-byte, but Flash technologies are improving latencies and band-
width. Specifically, you can make the following assumptions about magnetic hard-disk
drives (HDDs) and Flash-based solid-state drives (SSDs) listed in Table 1.

Your new company, HyDrive ®), thinks it can provide the best of both worlds by shipping
a hybrid hard drive and new filesystem. Your hybrid drive contains both a large(r) HDD
and a small(er) SSD, each of which is block-addressed and independently controlled; con-
sider them two independent disks that are sold inside the same package. Unfortunately,
everyone—HyDisk ®), DriveBrid ®), DiskBrid ®, Grapes ®—is cramming two disks into
one box and pretending that it’s innovative. What sets HyDrive apart is the innovative
new filesystem you are selling that takes full advantage of the capabilities of both the
HDD and SSD.

Describe the design of the breakthrough HyDrive ®filesystem. You can use any of the
ideas presented in class, but should aim to achieve the best of both worlds and have a
single filesystem spanning both disks, with seek times as fast (or close to) as the SSD,
capacity as large as (or close to) the HDD and SSD combined, and better durability and
failure recovery than an HDD alone. Be very specific about the design and implementa-
tion of your new filesystem. In particular, it is necessary (but not sufficient) to address the
following questions:

e What file metadata is required to name files and locate their contents?
e Where is file metadata stored?
Where is file data stored?

How does your filesystem determine where to put file metadata and file data?

How does your filesystem recover after an unplanned power outage or reboot? How
do you recover from failures on the HDD? What about failures on the SSD?

How does your design harness the best features of the SSD? What about the benefits
of the HDD?

Keep in mind that because you are implementing a filesystem, rather than a disk controller,
you have visibility into file operations such as reads and writes and don’t have to confine
yourself to observing block-level operations.

14 / 14 UB ID:

