
CSE421 Alternate Midterm Solutions
—SOLUTION SET—

06 Mar 2013

This midterm exam consists of three types of questions:

1. 10 multiple choice questions worth 1 point each. These are drawn directly from
lecture slides and intended to be very easy.

2. 6 short answer questions worth 5 points each. You can answer as many as you want,
but we will give you credit for your best four answers for a total of up to 20 points.
You should be able to answer the short answer questions in four or five sentences.

3. 2 long answer questions worth 20 points each. Please answer only one long answer
question. If you answer both, we will only grade one. Your answer to the long
answer should span a page or two.

Please answer each question as clearly and succinctly as possible. Feel free to draw pic-
tures or diagrams if they help you to do so. No aids of any kind are permitted.

The point value assigned to each question is intended to suggest how to allocate your
time. So you should work on a 5 point question for roughly 5 minutes.

Statistics:

• 6 students took this exam.

• 41 was the median score.

• 40.33 was the average score.

• 5.85 was the standard deviation of the scores.

CSE421 Alternate Midterm Solutions 06 Mar 2013

Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) Why wouldn’t the diva sing?
⃝ She needed vocal surgery.

√
Her dressing room contained inappropriately-

colored M&Ms. ⃝ She was hungry. ⃝ The lip-sync track was broken.

(b) Which of the following operating system abstractions is not tied to a hardware
component?
⃝ Threads.

√
Processes. ⃝ Address spaces. ⃝ Files.

(c) What does the following system call do?

exec (”/bin/true ”) ;

⃝ Fail.
√

Load and execute “/bin/true”. ⃝ Return the exit code of
process “/bin/true”. ⃝ Wait for process “/bin/true” to exit.

(d) What does exec() do to the process file table?
⃝ Copies it.

√
Nothing. ⃝ Opens STDIN, STDOUT and STDERR. ⃝ Clears

it.

(e) Which is probably a privileged instruction?
⃝ Load a word from memory.

√
Change the interrupt mask. ⃝ Add

two registers and place the result in a third register. ⃝ Rotate the value of a
register right by the value of a second register.

(f) True or false: the following code ensures that variable foo is protected? (Assume
foo lock exists and was properly initialized; do not make any other assump-
tions.)

l o c k a c q u i r e (f o o l o c k) ;
/ / mod i fy f o o
l o c k r e l e a s e (f o o l o c k) ;

⃝ True.
√

False.

(g) Which of the following is not an example of an operating system mechanism?
⃝ Virtual to physical address translation.

√
Using priorities to choose the

next thread to run. ⃝ An interrupt handler. ⃝ Identifying interactive
threads by observing their wait patterns.

(h) Normal users are not aware of laptop
⃝ responsiveness. ⃝ screensavers.

√
resource allocation. ⃝ weight.

(i) Who has to approve patches to mainline Linux?√
Linus Torvalds. ⃝ God. ⃝ Con Kolivas. ⃝ Erasmus B. Dragon.

(j) A virtual address might point to
⃝ virtual memory. ⃝ grapes.

√
0xdeadbeef. ⃝ a register on the

CPU.

2 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

Short Answer

Choose 4 of the following 6 questions to answer. You may choose to answer additional
questions, in which case you will receive credit for your best four answers.

2. (5 points) We’ve presented synchronization primitives that use both active (or busy)
and inactive (or blocking) waiting. First, explain the difference. Second, for each
describe a scenario in which that form of waiting is more efficient and why.

Rubric:

Graded by Zihe Chen.

• +3 points: describe the difference.

• +1 point: per scenario.

Solution:

Busy waiting occurs when a thread continues to occupy the processor while waiting
for something to happen. Blocking waiting occurs when a thread yields and asks the
kernel to wake it when something specific has happened.

Busy waiting can be more efficient on multi-core systems when the critical section is
short. In this case, the overhead to perform the context switch required for a blocking
wait is larger than the time spent spinning waiting for another thread (or hardware
device) to complete.

Blocking waiting can be more efficient when critical sections are long, and is required
on single-core systems when the action that a thread is waiting on requires another
thread to access the processor. In this case, the time spent spinning would waste a
great deal of processor time while waiting for the other thread (or hardware device)
to complete.

Statistics:

• 6 out of 6 students answered this question.

• 5 was the median score.

• 4.83 was the average score.

• 0.37 was the standard deviation of the scores.

3 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

3. (5 points) Explain how to use the fork(), pipe(), and any other required system calls
to establish the interprocess communication (IPC) between a parent and child process
started by the following shell command:

$ c a t exam . tex | wc

Drawing a diagram or set of diagrams may be helpful. You may also write pseudo-
code as long as it is sufficiently clear. (It does not have to be able to compile.)

Rubric:

Graded by Zihe Chen.

• -1 point: for missing pipe.

• -1 point: for missing fork.

• -2 point: for the remainder after fork and explanation.

Solution:

Almost directly from the lecture slides.
1 i n t pipeEnds [2] ;
2
3 pipe (pipeEnds) ; / / I n i t i a l i z e p i p e f i l e d e s c r i p t o r s .
4
5 /∗ We ’ d a c t u a l l y need t o m a n i p u l a t e t h e f i l e t a b l e us ing dup
6 so t h a t STDIN f o r wc and STDOUT f o r c a t p o i n t e d a t t h e p ipe ,
7 but we ’ l l a l l o w s o l u t i o n s t h a t omit t h a t s t e p . ∗ /
8
9 i n t returnCode = fork () ; / / Should h a n d l e e r r o r h e r e !

10
11 /∗ Pa re n t and c h i l d r o l e s be low can be swapped . ∗ /
12
13 i f (returnCode == 0) {
14 / / Somebody n e e d s t o run wc .
15 c l o s e (pipeEnds [1]) ; # Not necessary , but improves c l a r i t y .
16 exec (”/bin/wc”) ;
17 } e lse {
18 / / Somebody n e e d s t o run c a t .
19 c l o s e (pipeEnds [0]) ;
20 exec (”/bin/ c a t ”)
21 }

Statistics:

• 4 out of 6 students answered this question.

• 5 was the median score.

• 5 was the average score.

• 0.0 was the standard deviation of the scores.

4 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

4. (5 points) List and describe the three thread states we discussed in class. Next, de-
scribe four transitions between them including when and how they occur.

Rubric:

Graded by Zihe Chen.

• +3 points for identifying the three states.

• +1 point for four transitions.

• +1 point for when and how they occur.

Solution:

Thread states:

1. Running: actively executing instructions on a processor core.

2. Ready: not scheduled on a core, but ready to execute.

3. Blocked or Waiting: waiting for something to happen and not ready to run until
it does.

Examples of transitions:

• Running → Ready: a context switch occurred and a thread was descheduled.
Thread state is saved, thread is moved to the ready queue, and a new thread is
chosen to run on the now-free core.

• Running → Waiting: a thread performed a block system call or began waiting
for some other thing to happen. Context switch occurs, thread state is saved, the
thread is moved to the waiting queue and a new thread is scheduled.

• Waiting → Ready: the blocking event that a thread was waiting for completed,
and the thread can now continue to run. Thread is moved from the waiting
queue to the ready queue.

• Ready → Running: thread was scheduled, chosen by the kernel to run on a
processor core. Thread state is reloaded and thread is removed from the ready
queue.

Statistics:

• 6 out of 6 students answered this question.

• 5 was the median score.

• 4.67 was the average score.

• 0.47 was the standard deviation of the scores.

5 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

Starting Virtual Address Bound Base Physical Address Permissions

98 100 450 R,W,E
2 40 100 R

1040 1000 10,000 R,W
2200 500 1000 R,W,E

Table 1: Segmentation Table.

5. (5 points) Segmentation translation using table.

Given the segment table above, indicate the result of the following five load, stores,
and fetches (load and execute.) Note: to make things easier on everyone the ques-
tion uses base-10 arithmetic.

Rubric:

Graded by Zihe Chen.

• +1 point for each translation.

Solution:

1. load 1200 → load 10,160.

2. store 10 → exception, segment starting at 2 marked as read only. Had the seg-
ment been marked writable, would go to 108.

3. load 2080 → exception, no segment loaded for this virtual address. Kernel must
either load a segment description into the MMU or kill this process if the address
is not valid.

4. fetch 143 → fetch from 495.

5. store 1050 → store to 10,010.

Statistics:

• 3 out of 6 students answered this question.

• 5 was the median score.

• 4.67 was the average score.

• 0.47 was the standard deviation of the scores.

6 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

6. (5 points) Differentiate between time and space multiplexing, and explain how each
concept applies to processor and memory sharing.

Rubric:

Graded by Zihe Chen.

• +2 points for explaining the difference.

• +3 points for explaining how they apply.

Solution:

Time multiplexing involves sharing a resource by dividing access to it in time. At
some time, you allow one process access to it; at a later time, you provide access to
some other process. Multiplexing a single-core system is essentially done using time
multiplexing.

Space multiplexing involves sharing a resource by dividing it into smaller pieces
which are used concurrently. You give part of it to one process, part of it to another,
and both may use it simultaneously. Memory is primarily shared using space multi-
plexing.

Bonus points for pointing out that both of these resources actually use a mixture of
both space and time multiplexing. Multi-core systems divide cores between threads
using space multiplexing. And memory systems change allocations of memory be-
tween processes over time, achieving a form of time multiplexing.

Statistics:

• 1 out of 6 students answered this question.

• 3 was the median score.

• 3 was the average score.

• 0.0 was the standard deviation of the scores.

7 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

7. (5 points) Your boss at Engitech is an radical egalitarian. You’ve written some clever
code using two threads performing separate tasks that together accomplish your ob-
jectives of meeting the customer’s every need, but he’s concerned about fairness. He’s
worried that if one of your threads ends up doing too much work, the other thread
will feel bad and become discouraged. So he’s instructed you to implement a fairness
policy so that your two threads must periodically meet at a fixed place in your code.
If one thread arrives first, it should wait for the other, and this should work regard-
less of which thread arrives first. Once both threads meet together, both can continue
with their separate tasks.

Explain how to implement this egalitarian dream world using two semaphores.

Graded by Zihe Chen.

Rubric:

• +1 for correctly initializing both semaphores.

• +2 for correct used of P() and V().

Solution:

Initialize both semaphores, S1 and S2, to zero. Then, to establish this barrier, at some
point in the code for Thread 1 you insert the following:

1 / / e n t e r and wa i t
2 P (S1) ;
3 V(S2) ;
4 / / c o n t i n u e

Similarly, at some point in the code for Thread 2 you insert the following:
1 / / e n t e r and wa i t
2 V(S1) ;
3 P (S2) ;
4 / / c o n t i n u e

If Thread 1 arrives first, it will block on S1; similarly, Thread 2 will block on S2 if
it arrives first. If Thread 1 arrives second, P(S1) will not block and V(S2) will free
Thread 2. If Thread 2 arrives second, V(S1) will free Thread 1 and P(S2) will not
block, or not for long—since Thread 1 will immediately V() it once freed.

Statistics:

• 5 out of 6 students answered this question.

• 5 was the median score.

• 4.4 was the average score.

• 0.8 was the standard deviation of the scores.

8 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

Long Answer

Choose 1 of the following 2 questions to answer. Please do not answer both questions.
If you do, we will only read one.

If you need additional space, continue and clearly label your answer on the back of this
or other exam sheets.

8. (20 points) Choose one of the following two questions to answer:

1. Starvation v. Utilization in Reader-Writer Locks. Describe the tension between
improving utilization and preventing starvation when implementing reader-writer
locks. Outline two conceptual approaches (do not write code) to implementing
reader-writer locks. For each, explain how it avoids starvation and the effect this
has on the utilization of the resource the lock is protecting.

2. Deadlock. List the four requirements for deadlock. In class, we solved the dining
philosophers problem by eliminating one of the deadlock conditions. Describe
two separate approaches to eliminating deadlock for this problem that eliminate
other deadlock requirements, as well as any additional kernel support each so-
lution requires over-and-above the primitives that exist or we have asked you to
implement for OS/161.

Rubric:

Graded by Aditya Wagh.

Both long answers were divided into two 10-point sections, each of which covers sev-
eral issues. Based on your answer, you might receive:

• 10 points for an excellent discussion of all or most of the issues,

• 8 points if you covered most of the issues but made minor mistakes,

• 5 points if some of your points are wrong,

• 3 points for attempts that cover at least one issue,

• 0 points for nothing or a completely irrelevant answer.

Statistics:

• 14 was the median score.

• 13.33 was the average score.

• 4.11 was the standard deviation of the scores.

9 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

Starvation v. Utilization in Reader-Writer Locks.

Rubric:

• 10 points for discussing starvation and utilization.

– How do you improve utilization?
– How might this lead to starvation?

• 10 points for two approaches.

– How does the approach work?
– How does it prevent starvation?
– What about utilization?

Solution:

Achieving high utilization on a reader-writer lock requires allowing as many reads
as possible to proceed in parallel. However, taken to the extreme this would allow
prevent writers from making progress as long as their was a steady stream of readers.
Preventing this kind of starvation always requires stopping the stream of readers and
eliminating potential concurrency in order to allow writers (or a writer) to proceed.
The question is the conditions under which this is done.

One potential solution to the reader-writer lock problem is to handle requests in the
order in which they arrive. Imagine requests arrive in this order, and that each read
or write takes one time unit to complete:

R0 → R1 → R2 → W3 → W4 → R5 → R6 → R7 → W8 → R9

Then the order-of-arrival solution does the following:

1. T = 0: R0, R1, R2.

2. T = 1: W3.

3. T = 2: W4.

4. T = 3: R5, R6, R7.

5. T = 4: W8.

6. T = 5: R9.

In this case, this solution has handled 10 requests in 6 time units. However, if we
reordered requests notice that we could have handled all 10 requests in only 4 time
units. So this solution has sacrificed concurrency and utilization in order to avoid
starvation.

A second solution prevents starvation by bounding the amount of time that the lock
can remain in read mode while a writer is waiting. When a writer arrives and the lock

10 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

is in read mode, a countdown timer is set. Once it goes off, no additional readers are
allowed to enter. When the lock clears, the writer can proceed.

In the above example, to make things concrete, the timer might allow R6, R7, and R8
to complete with R1, R2 and R3, even while W4 is waiting, improving the concurrency
by a single time unit. Here the idea is that we are directly trading off writer waiting
time to try and increase reader concurrency. Most solutions do this to some extent or
another.

11 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

Deadlock.

Rubric:

• 10 points for correctly identifying all four deadlock conditions.
– 8 points for three.
– 5 points for two.
– 3 points for one.

• 10 points for describing two approaches to eliminating deadlock.
– How do they work?
– What additional kernel support is required?

Solution:

The four conditions for deadlock were:

1. Protected access to shared resources, which requires waiting.
2. No resource preemption, meaning that the system cannot take a resource from

a thread holding it.
3. Multiple independent requests, meaning a thread can hold some resources

while requesting others.
4. Circular dependency graph, identified in the directed graph of who’s waiting

for who.

In class, we relaxed the dependency graph to establish a solution. Here are other ways
to do it:

1. Protected access: don’t let threads sleep waiting on other threads while holding
forks/chopsticks! You’d end up with something like this:

while (1) {
/ / We can wa i t f o r t h e f i r s t r e s o u r c e , j u s t not f o r
/ / o t h e r r e s o u r c e s once we h o l d one .
l o c k a c q u i r e (r i g h t c h o p s t i c k) ;

i f (l o c k a c q u i r e n o b l o c k (l e f t c h o p s t i c k) != 0) {

/ / We don ’ t h o l d t h e l o c k , s o drop t h e r i g h t
/ / c h o p s t i c k and t r y a g a i n .
l o c k r e l e a s e (r i g h t c h o p s t i c k)

} e lse {
break ;

}
}

12 / 13

CSE421 Alternate Midterm Solutions 06 Mar 2013

Here you would clearly need the lock acquire noblock call which you currently
do not have, that would have to peek at the state of the lock and return non-zero
if it cannot be acquired.

2. No resource preemption: here we need two things. First, we need a way to re-
move a resource from a thread on the waiting queue, which requires a way to
identify what it is waiting for, temporarily remove that resource from it (how?)
and then return it later. One (ugly) way to do this would be to have the thread
pass a function pointer into lock acquire that could serve as a continuation
point if the lock is forcibly revoked, allowing the thread to perform some cleanup.
Note, however, that this solution also requires a way to identify deadlock! Deadlock
detectors are non-trivial and probably the more difficult part of this approach.
Combined with the difficulty of resource preemption, this is a tough road to
take.

3. Multiple independent requests: don’t grant individual resources, only sets of
resources to threads that don’t currently hold any. So you need a few changes.
First, you need lock acquire to allow you to acquire multiple, potentially many,
locks. Second, you need to change the semantics of lock acquire so that it keeps
track of threads that hold any lock. A second request for any lock by a thread
currently holding one should fail, since this constitutes a second independent
request.

13 / 13

