
Name UBID Seat Side

Question: 1 2 3 4 5 6 7 8 9 10 11 12 Total

Points: 10 5 5 5 5 5 5 20 20 25 25 25 100

Score:

CSE 421/521 Final Exam
12 May 2014

This final exam consists of four types of questions:

1. Ten multiple choice questions worth one point each. These are drawn directly from
second-half lecture slides and intended to be (very) easy.

2. Six short answer questions worth five points each. You can answer as many as you
want, but we will give you credit for your best four answers for a total of up to
20 points. You should be able to answer the short answer questions in four or five
sentences. These are also drawn from second-half material exclusively.

3. Two medium answer questions worth 20 points each, also drawn from second-
half material. Please answer one, and only one, medium answer question. If you
answer both, we will only grade one. Your answer to the medium answer should
span a page or two.

4. Three long answer questions worth 25 points each, integrating material from the
entire semester. Please answer two, and only two, long answer questions. If you
answer more, we will only grade two. Your answer to the long answer question
should span several pages.

Please answer each question as clearly and succinctly as possible—feel free to draw pic-
tures or diagrams if they help. The point value assigned to each question is intended to
suggest how to allocate your time. No aids of any kind are permitted.

Please check your name and UB ID number above. There are 12 scratch pages at the end
of the exam. When using them, please clearly indicate which question you are answering.

I have neither given nor received help on this exam.

Sign and Date:



CSE 421/521 Final Exam 12 May 2014

Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) The funniest thing that happened during class this semester was when
⃝ Guru fell asleep. ⃝ someone thought that one class was actually only five
minutes long. ⃝ Geoff discussed what to do if you are flying a helicopter and
someone points a laser pointer at you1. ⃝ a PDF rotated unexpectedly.

(b) Which of the following is not a difference between the Xen and VMware ap-
proaches to virtualization?
⃝ Approach to instructions that are not classically virtualizable ⃝ Support
for the x86 architecture ⃝ Ability to run unmodified guest OSes ⃝ The
way that guest OSes modify their page tables

(c) It is the most difficult to get repeatable performance results when
⃝ consulting Jinghao’s blog. ⃝ running a system simulator. ⃝ measur-
ing a real system. ⃝ using a system model.

(d) Which of the following is not a page replacement algorithm we discussed?
⃝ FIFO ⃝ Least-Recently Used (LRU) ⃝ Clock ⃝ The Oracle

(e) All of the following are RAID levels presented by Patterson et. al’s paper except
⃝ RAID 0. ⃝ RAID 1. ⃝ RAID 4. ⃝ RAID 5.

(f) Which of the following is a requirement of implementing a virtual machine?
⃝ Synchronicity ⃝ Performance ⃝ Atomicity ⃝ Carl Nuessle

(g) A correctly-implemented journaling filesystem will never lose data.
⃝ True ⃝ Only if Zihe implemented it ⃝ False

(h) Which was one motivation for log-structured filesystems?
⃝ Disks were getting faster. ⃝ Filesystem buffer caches were getting larger.
⃝ John Gerber’s 80s hairstyle ⃝ Filesystem workloads were increasingly
dominated by writes.

(i) Which is not one of Butler Lampson’s hints for improving system performance?
⃝ Use hints. ⃝ Cache answers. ⃝ Compute in the background.
⃝ Aggregate load.

(j) Which is most likely to cause a disk head crash?
⃝ Scott Haseley’s music collection ⃝ ASST4 ⃝ Dropping a running
laptop off the roof of Davis ⃝ Your smartphone falling out of your pocket

1Just continue flying the helicopter! Simple.

2 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

Short Answer

Choose four of the following six questions to answer. You may choose to answer addi-
tional questions, in which case you will receive credit for your best four answers.

2. (5 points) Now that you’ve implemented the OS/161 system calls, let’s improve their
performance. Might as well start with getpid(), since it’s simple. First, briefly
explain the overhead of performing a call to getpid() (1 point). Second, propose a
way to reduce this overhead by exploiting properties of the getpid() system call (2
points). Finally, will this improve performance? If so, why? If not, why not? Justify
your answer (2 points).

3 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

3. (5 points) Google’s File System (GFS) and RAID share a common approach to im-
proving performance. First, describe the approach (3 points). Second, identify one
pro (1 point) and one con (1 point) with this technique.

4 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

4. (5 points) Describe two ways that filesystems compensate for or are designed around
specific properties of spinning disks. For each, first identify what the property is (1
point) and second explain how the filesystem is designed around it (2 points).

5 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

5. (5 points) Describe each step in the process of translating the path /home/trinity/os161
to an inode number in an FFS-like filesystem (1 point each step).

6 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

6. (5 points) Consider the lock interface used by OS/161. First, give an example of im-
proper use of locks that violates the lock interface (2 points). Second, explain how
good interfaces minimize the disruption required to improve existing code (3 points).

7 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

7. (5 points) The POPF x86 instruction is intended to alter the interrupt flag (IF) system
flag bit, which controls which interrupts the processor will handle2. However, if POPF
is executed by an unprivileged process it simply fails silently, i.e. it is executed but
does not modify the interrupt flag.

First, describe why POPF makes x86 difficult to virtualize (1 point). What property is
it missing that would make virtualization easier? Second, briefly describe how use
of POPF by the guest OS would be handled by full hardware virtualization (such as
VMware) and by paravirtualization (such as Xen) (2 points each).

2So it acts somewhat similarly to the splx() command in OS/161, although at the hardware level.

8 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

Medium Answer

Choose 1 of the following 2 questions to answer. Do not answer both questions. If you
do, we will only read the shorter one. Complete this question on attached scratch paper.
Clearly label your answer.

8. (20 points) Filesystem Versioning
Versioning is an attractive feature for filesystems to provide. It means that not only
does the filesystem provide access to the most recent file content through the familiar
API, but also uses available disk space to store older version of files and directories
as well as deleted files and directories.

Let’s consider how to add this feature to the traditional hierarchical filesystem designs
we’ve discussed. Here are design requirements for Our Versioned Filesystem (OVFS):

1. OVFS does not track every change to every file. Instead, it creates periodic snap-
shots that record the state of the filesystem at a particular point in time.

2. OVFS provides access to old file versions without changing the familiar UNIX
file API—through open(), close(), read()—with the exception that old file
versions cannot be written to, only read from. (Attempts to open file versions
with write permissions or perform writes can fail with an error.)

3. OVFS utilizes all available space to store old file versions. Once the disk capacity
is reached, it should apply a reasonable policy to remove old versions and create
space for new file content.

Present a design for OVFS. First, describe changes to filesystem naming required to
support #2 without causing undue interference to users’ abilities to name files nor-
mally (5 points). Second, describe how to perform a snapshot to store old file ver-
sions (5 points). Keep in mind that other file activity may be taking place, and con-
sider whether you can provide a coherent snapshot of the entire filesystem at an exact
moment in time or something more approximate. Third, present a default policy for
removing old file versions and argue why it is an appropriate default (5 points). Fi-
nally, describe one performance or storage optimization that you can implement in
OVFS to either reduce the disk activity or storage overhead of file versioning com-
pared with the simplest approach (5 points).

9 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

9. (20 points) Improving exec() ELF Loading
Recall that the ELF binary file contains an address space blueprint used by exec().
Depending on the process, the executable file can be quite large.

The simplest approach to implementing exec() is to have the ELF loader issue writes
to load all of the code pages from the ELF executable file. Each page load will generate
a VM fault which the OS will handle by adding pages to the code region allowing the
content to be copied from the file into the processes address space. The result is that
when the process begins running, all of its code pages are already present. OS/161’s
ELF loader does this by default.

Unfortunately, this violates one of our core system design principles! Let’s address
the problem3. First, identify the system design principle that is being violated and de-
scribe how (5 points). Second, describe a way to modify the ELF load during exec()
to avoid this problem (10 points). Your solution should completely eliminate disk activ-
ity during exec(), at the price of increased activity as the process begins to execute.
Carefully describe what happens during exec(), what happens afterward, and any
changes to core paging data structures that are required by your approach. Third,
identify one complication with this approach that could cause processes to crash and
describe a way to address it (5 points).

3You do not need to consider shared libraries—assume that all code needed by the process is in its own
ELF executable, either because it does not use shared libraries or was statically linked.

10 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

Long Answer

Choose two of the following three questions to answer. Please do not answer all three
questions. If you do, we will only read the shortest two. Complete these questions on the
attached scratch paper. Clearly label your answers.

10. (25 points) OS Implications of Fast, Cheap, Non-Volatile Memory
Since the dawn of computing OS designs have been forced to make price, perfor-
mance, and capacity tradeoffs when managing memory and secondary storage. Mem-
ory is fast but expensive (per byte) and volatile. Spinning disks are cheap (per byte)
and non-volatile but slow. Flash is also non-volatile but much slower than mem-
ory and more expensive than spinning disks. To a large extent, these tradeoffs have
driven the design of modern operating systems.

Now, imagine that you can cheaply provide a device with a terabyte of fast and
byte-addressable (like memory) but non-volatile (like disk) storage. This isn’t sci-
ence fiction—the architecture community is exploring the potential of next-generation
NVRAM chips that overcome the limitations of Flash. So let’s do some dreaming. . .4

Present and motivate five different significant aspects of OS design that you would
reconsider if you were designing an OS for a device with a single large and fast byte-
addressable NVRAM chip replacing both memory and the disk (5 points each)5.

Five may seem like a lot, but there are dozens of ways that this could revolutionize OS
design. Think through the various subsystems that currently manage or use memory
and the disk. Think about various OS operations that move state back and forth
between memory and the disk. Think about how memory and disk are managed
differently and how you could unify management of a single NVRAM chip. Think
about process startup and shutdown, installation and update, state maintenance, and
the effect of software bugs. Think about reboot. Consider big parts of the OS that may
no longer need to exist, but also about side effects of the volatile nature of memory
that you may want to preserve on NVRAM systems. Most of all: have fun!

4Thanks to Katelin Bailey, Luis Ceze, Steven D. Gribble and Henry M. Levy for inspiring this question.
5You can assume that we continue to use processor caches.

11 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

11. (25 points) OS Energy Management
At the beginning of the semester we identified two main OS responsibilities: (1) pro-
viding abstractions and (2) multiplexing system resources. We then looked at three
case studies of how this is accomplished for three core system resources: the CPU,
memory, and the disk. In each case we discussed both how the OS performs and
enforces resource allocations, and abstractions it provides to simplify resource usage.

A newer but equally-important resource for operating systems to manage is energy.
Energy consumption matters at both ends of the computing spectrum, including for
data centers for cost and power capping reasons, but particularly on mobile devices.
For this question let’s focus on smartphones—after all, consumers have been com-
plaining for years about their short battery lifetimes.

First, consider how energy as a resource differs from other system resources we have
discussed (10 points). These differences are significant from the perspective of de-
signing effective approaches to managing energy. You might want to use memory
management as a point of comparison, since several of the OS requirements for mul-
tiplexing memory (grant, enforce, . . .) don’t really have appropriate analogs with en-
ergy, and several new capabilities are needed.

Second, present a detailed design allowing operating systems to manage process en-
ergy consumption on battery-powered smartphones, describing any changes needed
at the hardware, OS, and system call interface layers (15 points). Be careful not to
make assumptions about OS capabilities regarding energy. Compared with the re-
sources we have discussed, managing energy has some unique prerequisites that
complicate the problem. It might be helpful to consider, as a starting point, an OS
that knows nothing about the energy consumed by processes and go from there. You
don’t need to provide abstractions unless they are required, but your solution should
enable multiplexing. You may want to consider typical usage of smartphones as well
as charging patterns as part of your design.

12 / 13 UB ID:



CSE 421/521 Final Exam 12 May 2014

12. (25 points) Smartphones, Meet Cloud
Today’s computing ecosystem is increasingly dominated by the interaction between
two “devices”—smartphones and the cloud—with complementary characteristics.
The cloud is always-on, wall-powered, has large amounts of computational power
as well as memory and storage capacity, but is located at a datacenter far, far away6.
In contrast, smartphones are also always-on and always nearby, but have capabil-
ities constrained by multiple factors: energy, form, price, and heat dissipation. It
seems likely that smartphones will never be as powerful as the cloud, but neither will
the cloud ever be as nearby as your smartphone. It is also much easier to make the
cloud faster—just add more machines—whereas making the smartphone faster can
be challenging—how do I get eight cores into the same spot where four used to fit,
and without lighting a fire in someone’s pants?

But what we want to achieve is for our smartphones to serve as a front-end for the
cloud, making our smartphone seem as powerful as the cloud by intelligently arrang-
ing interactions between the two devices. First, make an argument using Amdahl’s
Law about how future improvements to cloud performance might be lost if cloud
resources aren’t used intelligently (5 points).

Second, apply two of the systems design principles that we discussed in class to im-
proving the interaction between energy-constrained smartphones and the cloud (10
points each). You can make the following simplifying assumptions:

• The cloud and the smartphone are always connected.

• However, access to local smartphone resources—CPU, memory, and storage—is
always much faster than accessing cloud resources due to network delays and lim-
itations7.

• The cloud can compute much faster and has much more storage available than the
smartphone.

• Smartphones are energy-constrained but also regularly recharged.

For each, state the design principle (2 points) and why it is applicable (2 points), and
then present a reasonable design sketch of how you propose to apply the principle
to smartphone-cloud interactions. Each of your improvements should probably have
the effect of either (a) improving user-visible performance, (b) reducing smartphone
energy consumption or (c) providing smartphones access to some new capability that
requires the cloud’s resources.

6Not necessarily that far, but farther than your pocket.
7At some point the speed of light also starts to play a role.

13 / 13 UB ID:


