
CSE 421/521 Final Exam Solutions
—SOLUTION SET—

12 May 2014

This final exam consists of four types of questions:

1. Ten multiple choice questions worth one point each. These are drawn directly from
second-half lecture slides and intended to be (very) easy.

2. Six short answer questions worth five points each. You can answer as many as you
want, but we will give you credit for your best four answers for a total of up to
20 points. You should be able to answer the short answer questions in four or five
sentences. These are also drawn from second-half material exclusively.

3. Two medium answer questions worth 20 points each, also drawn from second-
half material. Please answer one, and only one, medium answer question. If you
answer both, we will only grade one. Your answer to the medium answer should
span a page or two.

4. Three long answer questions worth 25 points each, integrating material from the
entire semester. Please answer two, and only two, long answer questions. If you
answer more, we will only grade two. Your answer to the long answer question
should span several pages.

Please answer each question as clearly and succinctly as possible—feel free to draw pic-
tures or diagrams if they help. The point value assigned to each question is intended to
suggest how to allocate your time. No aids of any kind are permitted.

Statistics:

• 147 students took this exam.

• 75 was the median score.

• 72.33 was the average score.

• 18.71 was the standard deviation of the scores.
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Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) The funniest thing that happened during class this semester was when
⃝ Guru fell asleep.

√
someone thought that one class was actually only five

minutes long.
√

Geoff discussed what to do if you are flying a helicopter
and someone points a laser pointer at you1.

√
a PDF rotated unexpectedly.

(b) Which of the following is not a difference between the Xen and VMware ap-
proaches to virtualization?
⃝ Approach to instructions that are not classically virtualizable

√
Support

for the x86 architecture ⃝ Ability to run unmodified guest OSes ⃝ The
way that guest OSes modify their page tables

(c) It is the most difficult to get repeatable performance results when
⃝ consulting Jinghao’s blog. ⃝ running a system simulator.

√
measur-

ing a real system. ⃝ using a system model.

(d) Which of the following is not a page replacement algorithm we discussed?√
FIFO ⃝ Least-Recently Used (LRU) ⃝ Clock ⃝ The Oracle

(e) All of the following are RAID levels presented by Patterson et. al’s paper except√
RAID 0. ⃝ RAID 1. ⃝ RAID 4. ⃝ RAID 5.

(f) Which of the following is a requirement of implementing a virtual machine?
⃝ Synchronicity

√
Performance ⃝ Atomicity ⃝ Carl Nuessle

(g) A correctly-implemented journaling filesystem will never lose data.
⃝ True ⃝ Only if Zihe implemented it

√
False

(h) Which was one motivation for log-structured filesystems?
⃝ Disks were getting faster.

√
Filesystem buffer caches were getting larger.

⃝ John Gerber’s 80s hairstyle ⃝ Filesystem workloads were increasingly
dominated by writes.

(i) Which is not one of Butler Lampson’s hints for improving system performance?
⃝ Use hints. ⃝ Cache answers. ⃝ Compute in the background.√

Aggregate load.

(j) Which is most likely to cause a disk head crash?
⃝ Scott Haseley’s music collection ⃝ ASST4

√
Dropping a running

laptop off the roof of Davis ⃝ Your smartphone falling out of your pocket

1Just continue flying the helicopter! Simple.
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Short Answer

Choose four of the following six questions to answer. You may choose to answer addi-
tional questions, in which case you will receive credit for your best four answers.

2. (5 points) Now that you’ve implemented the OS/161 system calls, let’s improve their
performance. Might as well start with getpid(), since it’s simple. First, briefly
explain the overhead of performing a call to getpid() (1 point). Second, propose a
way to reduce this overhead by exploiting properties of the getpid() system call (2
points). Finally, will this improve performance? If so, why? If not, why not? Justify
your answer (2 points).

Graded by Guru Prasad.

Rubric:

• +1 point for identifying the overhead

• +2 points for reducing the overhead

• +2 points for identifying that this will not reduce performance

Solution:

The overhead of getpid() is usual user-kernel transition overhead involving saving
state on the way into the kernel, incurred by every system call. The way to avoid
this is to note that each process ID is set during fork() (or clone(), if you are
supporting threads) and doesn’t change during the life of the process. So there is no
need for the process to enter the kernel repeatedly when asking for it. Instead, the C
library could simply cache the answer, or the kernel could write a copy of the process
ID to an agree-upon memory location during fork() and then getpid() could be
modified to retrieve it using a single load, which would be much more efficient that
trapping into the kernel.

Will this improve overall process performance? Of course not. Apply Amdahl’s Law.
Most processes rarely if ever retrieve their process ID, and if they do they probably
cache it using a local (or global) variable for the same reasons we just described. Or,
more colloquially, as Adam put it: “Processes just don’t call getpid() in a loop!”
Hopefully not.

Note that (a) this question was released to the class before the exam, and (b) it turns
out that it (unintentionally) also appeared on the 2012 Alternate Midterm. So hope-
fully people did well on this question!

Statistics:

• 143 out of 147 students answered this question.

• 3 was the median score.
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• 3.15 was the average score.

• 1.55 was the standard deviation of the scores.
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3. (5 points) Google’s File System (GFS) and RAID share a common approach to im-
proving performance. First, describe the approach (3 points). Second, identify one
pro (1 point) and one con (1 point) with this technique.

Graded by Zihe Chen.

Rubric:

• +3 points for describing the approach

• +1 point each for one pro and one con

Solution:

The shared approach is to build high-performance systems using large amounts of
commodity hardware. In the case of RAID, the goal was to replace a single expensive
disk with multiple cheaper disks. In the case of GFS, the goal was to replace a smaller
number of expensive servers with a larger number of cheaper commodity machines.

In both cases one of the key pros is that the price-performance curve shallows as you
go up; or, put another way, that low-end machines give you more “bang for your
buck” than high-end machines. So you can buy more disk bandwidth or server band-
width for the same amount of money. This is really the most important benefit.

The main drawback is by using more of anything—whether its disks or servers—to
accomplish the same task you degrade reliability. Given any non-zero probability that
a component will fail in a given period of time, the probability that N components will
fail approaches 1 as N gets larger. So you have to deal with the reliability problems
you’ve created. This is really the most important drawback.

Statistics:

• 79 out of 147 students answered this question.

• 4 was the median score.

• 3.15 was the average score.

• 1.66 was the standard deviation of the scores.
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4. (5 points) Describe two ways that filesystems compensate for or are designed around
specific properties of spinning disks. For each, first identify what the property is (1
point) and second explain how the filesystem is designed around it (2 points).

Graded by Zihe Chen.

Rubric:

• +1 point per property identified

• +2 points per filesystem design exploit or workaround

Up to 5 points total.

Solution:

There are a bunch of these. Here’s a non-exhaustive list:

• Data transfer limitations. FFS worked around bus-speed limitations of early disks
by not writing data to consecutive blocks, since doing so would cause the disk
buffer to fill and force it to stall and make a complete rotation before it could con-
tinue reading. Instead, it wrote files to alternate blocks at intervals allowing it to
match the disk transfer speed.

• Rotational effects. We mentioned that many filesystems try to put frequently-
accessed content at the outer edge of the disk—or at least start filling the disk at
that edge—because constant disk density combined with longer tracks on the outer
edge makes data transfer higher to and from that part of the disk.

• Seek times. We discussed many different attempts to reduce the impact of seek
times, including (1) utilizing a buffer cache, (2) locating inodes and file content
close to each other, (3) locating data blocks from the same file close to each other,
and (4) locating related files close to each other—where distance is measured on the
disk in terms of the time needed to seek the heads from one track to another.

• Cylinder groups. FFS also used cylinder groups to locate related files and file meta-
data close to each other on the disk, specifically at places where they could be read
and written from multiple platters without moving the heads (very far). This ex-
ploits the fact that disks are created of multiple platters but the disk arm positions
all heads in the same location at the same time.
The idea of effectively breaking the filesystem into smaller filesystems, each with its
own inodes and data blocks, is preserved by modern filesystems such as ext4. The
goal is the same: reduce seeks between file metadata (i.e., inodes) and file content
(i.e., data blocks) by structuring the file system so that they are nearby on disk.

• Log-structured filesystems. LFS tried to address seek time limitations in a different
way by performing as many disk operations as possible to one location on the disk:
the end of the append-only log. This works as long as a large buffer cache soaks up
all or most reads, leaving only writes to be performed by the disk.
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• Journaling. Works around disk reliability problems by exploiting the atomicity
of operations to single disk blocks. If the filesystem can succinctly describe what it
was attempting to do when that operation spans multiple disk blocks, then it is eas-
ier to identify and either complete or abort unfinished operations when recovering
from a sudden failure.

I probably missed a few that you remembered.

Statistics:

• 134 out of 147 students answered this question.

• 5 was the median score. (This question was too easy.)

• 3.98 was the average score.

• 1.43 was the standard deviation of the scores.
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5. (5 points) Describe each step in the process of translating the path /home/trinity/os161
to an inode number in an FFS-like filesystem (1 point each step).

Graded by Zihe Chen.

Rubric:

• +1 point per step correctly identified.

Up to 5 points total.

Solution:

This was drawn pretty much exactly from the lecture slides.

1. Use the hardcoded value to map the root path component to an inode number.
Let’s say this is 2.

2. Open the directory with inode number 2.

3. Look for the “home” pathname component in directory 2 and map it to the next
inode number, say 3.

4. Open the directory with inode number 3.

5. Look for the “trinity” pathname component in directory 3 and map it to the next
inode number, say 4.

6. Open the directory with inode number 4.

7. Look for the “os161” pathname component in directory 4 and map it to the final
inode number, say 5.

If at any point one of the pathnames was not a directory, the mapping would fail.

Statistics:

• 125 out of 147 students answered this question.

• 5 was the median score. (This question was too easy.)

• 4.22 was the average score.

• 1.31 was the standard deviation of the scores.
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6. (5 points) Consider the lock interface used by OS/161. First, give an example of im-
proper use of locks that violates the lock interface (2 points). Second, explain how
good interfaces minimize the disruption required to improve existing code (3 points).

Graded by Zihe Chen.

Rubric:

• +2 points for an improper use of the lock interface

• +3 points for describing how good interfaces minimize the disruption caused by
improving existing code

Solution:

Here are a few different ways to misuse the lock interface:

• Acquiring the same lock you already hold.

• Freeing a lock that you do not hold.

• Call lock do i hold(), which is not part of the public lock interface.

• Poke around in the internal structure of the lock, inspecting or manually changing
the owner, etc.

We were really hoping that you would identify the second pair more than the first,
the reason being that the lock interface can defend itself from improper acquires and
releases, but not from improper use of what are supposed to be private methods or
internal tampering—this isn’t Java, and one of the nice things about Java is its rigidity
about defending interface definitions.

The reason why good interfaces and good interface usage simplify improving existing
code is that they allow programmers to change the implementations of their functions
without worrying about breaking other things. In many cases, library maintainers not
only didn’t write but can’t even imagine all the code that is using their functionality—
consider the C library as an example, and how many millions or billions of lines of
code depend on that library. So the interface description represents a contract between
the functions implementer and its users. The users agree to use the function a certain
way, and the implementer agrees that the interface will provide certain features.

In low-level languages like C interfaces are more a matter of convention and aren’t
enforced at the language level, but are still equally important. Consider the lock ex-
ample above. Because lock do i hold() isn’t part of the public interface, it isn’t
guaranteed to (a) work the same way over time or (b) even exist from generation to
generation as the lock code changes. So if your code improperly uses and depends on
it, you may be in for a nasty surprise one day when entire chunks of your previously-
working program stop functioning.

Statistics:
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• 92 out of 147 students answered this question.

• 2 was the median score. (This question was hard.)

• 2.45 was the average score.

• 1.8 was the standard deviation of the scores.
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7. (5 points) The POPF x86 instruction is intended to alter the interrupt flag (IF) system
flag bit, which controls which interrupts the processor will handle2. However, if POPF
is executed by an unprivileged process it simply fails silently, i.e. it is executed but
does not modify the interrupt flag.

First, describe why POPF makes x86 difficult to virtualize (1 point). What property is
it missing that would make virtualization easier? Second, briefly describe how use
of POPF by the guest OS would be handled by full hardware virtualization (such as
VMware) and by paravirtualization (such as Xen) (2 points each).

Graded by Guru Prasad.

Rubric:

• +1 point for identifying the virtualization challenge posed by POPF

• +2 points for describing how this would be handled by full hardware virtualization
approaches

• +2 points for describing how this would be handled by paravirtualization ap-
proaches

Solution:

POPF is not a classically-virtualizable instruction. Instead of trapping when run in un-
privileged mode, which is what we need to perform trap-and-emulate virtualization,
it just fails silently. Alternatively, it behaves differently when run as an unprivileged
user rather than raising an exception. So if we are trying to run a guest OS at a low-
ered privilege level, there is no mechanism to alert us when it tries to execute this
instruction and it does not have the intended effect.

Full hardware virtualization approaches, such as VMware, can’t change the guest OS.
So they have to detect that the POPF instruction is about to be executed and rewrite
it to a safe series of instructions that either (a) has the intended effect directly or (b)
enters the VMM so that it can adjust the state of the VM IF register.

Paravirtualization approaches, such as Xen, can change the guest OS. So they would
rewrite any instruction sequences that used POPF to instead either (a) trap into the
VMM or (b) utilize a new VMM interface designed to support altering the IF register.

Statistics:

• 83 out of 147 students answered this question.

• 3 was the median score. (This question was too easy.)

• 2.46 was the average score.

• 1.72 was the standard deviation of the scores.

2So it acts somewhat similarly to the splx() command in OS/161, although at the hardware level.
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Medium Answer

Choose 1 of the following 2 questions to answer. Do not answer both questions. If you
do, we will only read the shorter one. Complete this question on attached scratch paper.
Clearly label your answer.

8. (20 points) Filesystem Versioning
Versioning is an attractive feature for filesystems to provide. It means that not only
does the filesystem provide access to the most recent file content through the familiar
API, but also uses available disk space to store older version of files and directories
as well as deleted files and directories.

Let’s consider how to add this feature to the traditional hierarchical filesystem designs
we’ve discussed. Here are design requirements for Our Versioned Filesystem (OVFS):

1. OVFS does not track every change to every file. Instead, it creates periodic snap-
shots that record the state of the filesystem at a particular point in time.

2. OVFS provides access to old file versions without changing the familiar UNIX
file API—through open(), close(), read()—with the exception that old file
versions cannot be written to, only read from. (Attempts to open file versions
with write permissions or perform writes can fail with an error.)

3. OVFS utilizes all available space to store old file versions. Once the disk capacity
is reached, it should apply a reasonable policy to remove old versions and create
space for new file content.

Present a design for OVFS. First, describe changes to filesystem naming required to
support #2 without causing undue interference to users’ abilities to name files nor-
mally (5 points). Second, describe how to perform a snapshot to store old file ver-
sions (5 points). Keep in mind that other file activity may be taking place, and con-
sider whether you can provide a coherent snapshot of the entire filesystem at an exact
moment in time or something more approximate. Third, present a default policy for
removing old file versions and argue why it is an appropriate default (5 points). Fi-
nally, describe one performance or storage optimization that you can implement in
OVFS to either reduce the disk activity or storage overhead of file versioning com-
pared with the simplest approach (5 points).
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Graded by Jinghao Shi.

Rubric:

• +5 points for describing the naming changes required to support versioning

• +5 points for describing how to perform a snapshot

• +5 points for describing a default policy for removing old versions

• +5 points for describing one optimization to reduce disk activity or storage over-
head (or both)

Solution:

If you’ve used a versioning filesystem previously, you probably had a leg up on this
question. Let’s start by discussing the naming issue. The question asked you to pro-
vide access to old versions without changing the familiar UNIX file API—meaning
that they need to be part of the rest of the file namespace—but also specified that
you should do this without causing undue interference to users’ abilities to name files
normally. So you don’t want to version /path/to/my/file on May 13th, 2014, as
/path/to/my/file.2014.05.13. Instead, the common approach is to use hid-
den directories to store snapshots containing versioned files. These can be placed any-
where, as long as the directory structure under them matches the filesystem they are
versioning. For example, if we call our snapshot directories .snapshot, we could
version /path/to/my/file into /.snapshot/2014/05/13/path/to/my/file
or /path/to/my/.snapshot/2014/05/13/file. Placing snapshot directories
closer to the leaves of the filesystem makes them more difficult to browse, but also
makes it more likely that they store only files used by a single user on a multi-user
system. Many versioning filesystems on shared-user systems place a snapshot in each
users home directory as a nice compromise, so /home/trinity/os161.conf goes
into /home/trinity/.snapshot/2014/05/13/os161.conf.

Performing a snapshot is conceptually quite easy: simply copy all files into the appro-
priate subdirectory in the .snapshot directory. For example, on May 13th, 2014, you
would execute the equivalent of a
$ cp -aR /home/trinity /home/trinity/.snapshot/2014/05/13
However, as hinted this is complicated by the fact that ongoing file operations may
make it difficult to provide a coherent snapshot actually representing the exact state
of every file at that exact moment. Easiest way to deal with this? Don’t. Hopefully
you didn’t try to! Approximate snapshots are fine, although they may not correctly
preserve interfile dependencies.

At some point you’re going to start running out of space. There are a variety of good
policies for pruning old versions. One approach is to keep a lot of recent versions, say
every 15 minutes, since those soak up a lot of mistakes: “Did I really just delete that
entire directory?” Alongside those, you keep a sparser set of old versions, say one per
month, to aid with the “Where is that copy of my 2010 tax return?” type of problems.
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Finally, there are a lot of ways to reduce overhead. The main thing to observe is
that most files don’t change between every version, so there is no need to copy them.
(You could identify them using standard file access timestamps.) The only concern
this raises, of course, is interaction with your version pruning approach, since now
not every version will contain all files. A simple solution is to perform two kinds
of snapshots: incremental snapshots, which are low-overhead and can be performed
frequently; and full snapshots, which are high-overhead and should not be performed
frequently. Then you can delete incremental snapshots knowing that you will never
lose file versions past the point of the previous full snapshot.

Note that this question was released to the class before the exam.

Statistics:

• 138 out of 147 students answered this question.

• 18 was the median score.

• 16.67 was the average score.

• 3.03 was the standard deviation of the scores.
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9. (20 points) Improving exec() ELF Loading
Recall that the ELF binary file contains an address space blueprint used by exec().
Depending on the process, the executable file can be quite large.

The simplest approach to implementing exec() is to have the ELF loader issue writes
to load all of the code pages from the ELF executable file. Each page load will generate
a VM fault which the OS will handle by adding pages to the code region allowing the
content to be copied from the file into the processes address space. The result is that
when the process begins running, all of its code pages are already present. OS/161’s
ELF loader does this by default.

Unfortunately, this violates one of our core system design principles! Let’s address
the problem3. First, identify the system design principle that is being violated and de-
scribe how (5 points). Second, describe a way to modify the ELF load during exec()
to avoid this problem (10 points). Your solution should completely eliminate disk activ-
ity during exec(), at the price of increased activity as the process begins to execute.
Carefully describe what happens during exec(), what happens afterward, and any
changes to core paging data structures that are required by your approach. Third,
identify one complication with this approach that could cause processes to crash and
describe a way to address it (5 points).

Graded by Jinghao Shi.

Rubric:

• +5 points for identifying the systems design principles that is being violated

• +10 points for a solution

• +5 points for identifying and addressing the complication

Solution:

To begin, the design principle that is being violated is the idea that procrastination
can be useful. We discussed on-demand paging in class, and this is the opposite: we
are loading a great deal of code into the process’s address space that it will probably
never use. Granted much of this will end up swapped out once we are under memory
pressure, but it still creates a lot of disk activity and unnecessary memory usage to
load it in to the address space in the first place—and then to swap it out later. So let’s
fix that.

Note that our goal is to eliminate all disk activity during exec(), meaning that just
writing the pages directly to swap isn’t an option. That actually creates a lot of disk
activity, roughly twice of the normal amount, since I have to (1) read pages from disk
and (2) write them to swap. Clearly, the requirement to completely eliminate disk

3You do not need to consider shared libraries—assume that all code needed by the process is in its own
ELF executable, either because it does not use shared libraries or was statically linked.
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activity during exec() means that we have to leave content where it is—in the ELF
binary itself.

Recall that there are two kinds of content that get loaded into the address space during
exec(): code, and statically-initialized data. (Any data that gets initialized to zero
simply gets marked as zero-filled and pages are added as needed, so that’s already
doing what we want.) So instead of loading these into the address space, we need to
mark the PTEs to indicate both (a) the ELF file where they are located and (b) the offset
within the file where the content is located, or any information needed to perform the
on-demand load. In many cases the page content may already be page-aligned within
the ELF file, but if page aren’t completely occupied this may not be the case. Then, as
the process starts to run and generates page faults on regions of its address space that
are mapped to areas of the ELF file, the OS loads content from the ELF file directly into
newly-allocate pages. As an additional optimization, read-only code pages that are
backed by ELF files never have to be swapped out, since they can always be reloaded
from the binary. Note that this also enables page sharing between identical binaries,
so every copy of /bin/ls isn’t swapping in and out identical code pages. Nice.

Unfortunately, there is a wee problem with this approach, namely what happens if the
binary is modified while the process is executing? This could create inconsistent con-
tent between parts of the process that have been paged into memory and parts that
haven’t, and havoc could result. Addressing this requires some kind of integration
with the filesystem storing ELF binaries to prevent or at least trap accesses to binary
files that are being used to back running processes. Preventing accesses obviously
solves the problem, but has unfortunate consequences. Trapping accesses would al-
low the OS to load any pages from the affected binaries into memory to allow existing
processes to continue running without problems.

Statistics:

• 8 out of 147 students answered this question. (Ballers!)

• 20 was the median score.

• 18.75 was the average score.

• 1.79 was the standard deviation of the scores.
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Long Answer

Choose two of the following three questions to answer. Please do not answer all three
questions. If you do, we will only read the shortest two. Complete these questions on the
attached scratch paper. Clearly label your answers.

10. (25 points) OS Implications of Fast, Cheap, Non-Volatile Memory
Since the dawn of computing OS designs have been forced to make price, perfor-
mance, and capacity tradeoffs when managing memory and secondary storage. Mem-
ory is fast but expensive (per byte) and volatile. Spinning disks are cheap (per byte)
and non-volatile but slow. Flash is also non-volatile but much slower than mem-
ory and more expensive than spinning disks. To a large extent, these tradeoffs have
driven the design of modern operating systems.

Now, imagine that you can cheaply provide a device with a terabyte of fast and
byte-addressable (like memory) but non-volatile (like disk) storage. This isn’t sci-
ence fiction—the architecture community is exploring the potential of next-generation
NVRAM chips that overcome the limitations of Flash. So let’s do some dreaming. . .4

Present and motivate five different significant aspects of OS design that you would
reconsider if you were designing an OS for a device with a single large and fast byte-
addressable NVRAM chip replacing both memory and the disk (5 points each)5.

Five may seem like a lot, but there are dozens of ways that this could revolutionize OS
design. Think through the various subsystems that currently manage or use memory
and the disk. Think about various OS operations that move state back and forth
between memory and the disk. Think about how memory and disk are managed
differently and how you could unify management of a single NVRAM chip. Think
about process startup and shutdown, installation and update, state maintenance, and
the effect of software bugs. Think about reboot. Consider big parts of the OS that may
no longer need to exist, but also about side effects of the volatile nature of memory
that you may want to preserve on NVRAM systems. Most of all: have fun!

4Thanks to Katelin Bailey, Luis Ceze, Steven D. Gribble and Henry M. Levy for inspiring this question.
5You can assume that we continue to use processor caches.
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Graded by Jinghao Shi.

Rubric:

• +5 points per well-explained reconsidered design aspect.

Solution:

If you want the real complete solution to this question, look up this paper from the
13th Workshop on Hot Topics in Operating Systems (HotOS’11). The solution is es-
sentially just paraphrasing their ideas.

Here’s a set of eight, but there could be more.

1. Goodbye paging and 4K page sizes. Quite obviously, a device without both disk
and memory no longer needs to move pages from disk to memory. Remember
our goal when choosing pages to evict? We wanted to make the system look
like it had as much memory as the disk size, all of it as fast as memory. Mission
accomplished! This is an entire large OS subsystem that we can largely remove.
In addition, remember that we chose a page size for a variety of reasons that had
a lot to do with the backing store. When swapping, large pages minimize the
size of kernel data structures while also amortizing the cost of disk seeks inside
the swap file (or disk). But we are no longer swapping. Obviously, however,
page size still plays a role in terms of hardware-aided address translation via the
MMU and TLB, but because the NVRAM is byte-addressable we can experiment
with new pages sizes more suitable given this radical architectural change. Some
memory allocation and protection mechanisms even eliminate pages entirely.

2. Unifying memory and filesystem protection. Because we no longer have a sep-
aration between the memory and the disk, we need to consider how to unify the
protection models. Memory protection is hardware-enforced on page bound-
aries. In contrast, filesystems provide more coarse-grained (file-level) but richer
protection semantics, including the idea of ownership, group permissions, per-
mission inheritance (via directories), and even the flexibility provided by capability-
based access control lists (ACLs) on some filesystems. Part of this richness, obvi-
ously, is because filesystem protection mechanism are implemented in hardware,
rather than software.
But now with a single large NVRAM chip serving as both memory and disk, we
might want to consider a way to unify these. At minimum, we have to ensure
that the protection semantics provided by hardware when the NVRAM is used
“like memory” are more closely-matched by what the OS provides in software
when the NVRAM is used “like a disk”.

3. Unifying and memory and filesystem naming. Another fundamental difference
between memory and filesystems we need to reconsider is the idea of address
spaces and how virtual addresses are translated. Address spaces essentially pro-
vide each process with a separate local namespace—recall that a virtual address
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is meaningless without an address space to translate it inside, or alternatively
without knowing what process is translating the virtual address. In contrast,
filesystems provide a global namespace: /path/to/foo is the same file regard-
less of which process is opening or accessing the file. Unifying these two abstrac-
tions requires identifying and addressing this issue. One approach is to move to
single address space machines, which have been previously explored.

4. Installing, packaging, and launching apps. Today, executing an app essentially
transforms it from one form—on disk—to another—in memory. This is the job
of the ELF file loader during exec(). A single NVRAM chip replacing both the
disk and memory makes this unnecessary, and apps can be distributed in their
ready-to-run form, eliminating the job of the ELF loader. Another big part of
the OS gone! Although you still need to consider how to reconcile the addresses
the process wants to use with the NVRAM that’s available on the machine, but
loadable libraries have approaches to doing this that could simplify the process.
This change also fundamentally alters how application save state. Currently pro-
cesses have to write out to stable storage to save state and have developed elab-
orate and process-specific mechanisms for doing so. A big chunk of non-volatile
memory makes that unnecessary, and allows them to essentially be stopped and
restarted in any state without any additional process support. So this really com-
pletely eliminates the usual process of “starting up” and “shutting down” a pro-
cess as we currently know it, with no impact on memory consumption. Cool!
Finally, NVRAM also makes it extremely easy to move process setups from ma-
chine to machine, stored exactly at any point in their execution.

5. Application faults. At last, a downside! One of the interesting side effects of
NVRAM is that what used to be impermanent (RAM) is now permanent. Start-
ing up and shutting down processes isn’t done only to let the OS know that you
are done using a particular program and allow its resources to be freed—it also
creates a chance for the process to reload its memory contents from a known
good starting point frozen in the ELF file. This is particularly important if the
process is restarting to recover from a fault. So removing this capability entirely
isn’t necessarily a great idea, since whatever state corruption led to the fault is
now impossible to remove.
There are a few ways to address this without forcing processes back to storing
state “on disk”. One way is to have users create snapshots or checkpoints of the
process at good states, which could be stored in the (very large) NVRAM and
reverted to after failures.

6. Decoupling power cycles and reboot. Another interesting effect of the single
large NVRAM chip is that power cycles no longer have to trigger a reboot. If the
device loses power, (almost) all of its state is permanently stored on the NVRAM,
with the exception being any register state associated with its execution at that
precise instant. (Although with a small amount of battery backup that could
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be written to the NVRAM after a sudden loss of power before the processor
went offline.) So the idea that power cycles need to trigger a reboot on wall-
powered devices no longer holds. On battery-powered devices the story is even
simpler, since they already have ways to monitor their battery levels and don’t
need to be unprepared for most power outages—with the exception being the
user suddenly ripping the battery out!

7. Reboot and data corruption. While this sounds like a plus, reboots for the OS
can serve the same useful purpose as restarts do for processes: the chance to
reload potentially-corrupted state from a known good starting point. So it prob-
ably makes sense to preserve some kind of reboot mechanism that can be trig-
gered by users when needed that allows the OS to reinitialize state and recover
from faults it may be unable to detect. But again, there is no need for reboots to
be coupled in an way to power cycles, since the “memory” never loses state.

8. New sleep states. As previously mentioned, the overhead of entering a low-
power sleep state is now limited to the cost of unloading the process registers
into the NVRAM and then powering down the processor. On most mobile de-
vices, the memory must either be moved to stable storage in order to be powered
off—an expensive process—or kept in an active state to avoid losing contents,
which consumes power. Our new device avoids this entirely and can sleep both
much more quickly and completely and power on much more rapidly.

9. Moving data between machines. Finally, given the mixed nature of the content
on the NVRAM, it may become more difficult to move data between machines.
Part of this depends both on the protection and naming mechanisms adopted
for a unified memory and disk storage device, as well as the ways that processes
adapt to this change. For example, if processes choose to begin bypassing the
file abstraction and store data that is usually store in files in memory—which
is safe, since memory is permanent—it becomes impossible for users to move
files from place to place. As a concrete example, if iTunes starts just storing all
my MP3 content in memory, how do I reorganize (again, for the 12th time) my
music collection? There are no files to manipulate! Or what if I want to move a
picture to a thumb drive to show to a friend? But maybe filesystems and files are
dead and over anyway, and all data transfer in the future will take place through
the cloud. Who knows.

Statistics:

• 99 out of 147 students answered this question.

• 21 was the median score.

• 19.08 was the average score.

• 5.79 was the standard deviation of the scores.
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11. (25 points) OS Energy Management
At the beginning of the semester we identified two main OS responsibilities: (1) pro-
viding abstractions and (2) multiplexing system resources. We then looked at three
case studies of how this is accomplished for three core system resources: the CPU,
memory, and the disk. In each case we discussed both how the OS performs and
enforces resource allocations, and abstractions it provides to simplify resource usage.

A newer but equally-important resource for operating systems to manage is energy.
Energy consumption matters at both ends of the computing spectrum, including for
data centers for cost and power capping reasons, but particularly on mobile devices.
For this question let’s focus on smartphones—after all, consumers have been com-
plaining for years about their short battery lifetimes.

First, consider how energy as a resource differs from other system resources we have
discussed (10 points). These differences are significant from the perspective of de-
signing effective approaches to managing energy. You might want to use memory
management as a point of comparison, since several of the OS requirements for mul-
tiplexing memory (grant, enforce, . . .) don’t really have appropriate analogs with en-
ergy, and several new capabilities are needed.

Second, present a detailed design allowing operating systems to manage process en-
ergy consumption on battery-powered smartphones, describing any changes needed
at the hardware, OS, and system call interface layers (15 points). Be careful not to
make assumptions about OS capabilities regarding energy. Compared with the re-
sources we have discussed, managing energy has some unique prerequisites that
complicate the problem. It might be helpful to consider, as a starting point, an OS
that knows nothing about the energy consumed by processes and go from there. You
don’t need to provide abstractions unless they are required, but your solution should
enable multiplexing. You may want to consider typical usage of smartphones as well
as charging patterns as part of your design.
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Graded by Jinghao Shi.

Rubric:

• +10 points for identifying differences between energy and other system resources

• +15 points for a design allowing operating systems to manage energy

Solution:

There were two parts of this question, clearly identified within the question. The first
asked you to identify differences between energy and other resources that would be
significant for energy management. The second asked you to design a way for the OS
to manage energy.

First, there are several important differences. One is that, unlike other system re-
sources, energy is depletable. Once it’s consumed, it can’t be reused, nor can previous
allocations be revoked. And when it’s gone, the device cannot be used. Contrast this
with the processor, which the device never “runs out of”: as long as the device is on,
there is more processor time. For the disk and memory, the device can run out, but at
that point both memory and storage can be reused by revoking previous allocations.
Memory can be reused by swapping out pages or, in the worst case, simply by killing
processes, in both casing creating new unused pages for a new process. Disk space
can be reused by prompting the user to remove old files.

As a result, bad OS energy management has the potential to be more damaging than
poor management of other resources. Consider what happens if the OS makes a bad
scheduling decision: the wrong thread or process runs for a few tens of milliseconds,
and then the OS has the chance to make a better scheduling decision. The device
isn’t going to have to power down as a result. Also with memory—if the OS swaps
out the wrong page, it may have to swap it right back in, hurting performance. But
again: the device isn’t going to power off, and the contents of the memory page are
preserved. But make a poor energy allocation decision and you may have just reduced
the device’s lifetime by seconds and can never recover from the mistake. So clearly
this is important!

A second significant difference is that energy is consumed implicitly by the usage
of other system resources, not directly. Processes don’t consume energy in order to
consume energy, the consume energy in order to use the processor, or read and write
to memory, or send data over the network interface, or draw to the display. Pretty
much every system component consumes energy to run, but the point isn’t to consume
energy—it’s to accomplish something else. Energy consumption is a side effect.

Second, as a guide to our design let’s return to our memory multiplexing requirements
as the question suggested and see if we can modify them for energy management.
They were:

• Grant: the kernel should be able to allocate the resource to processes.

22 / 30



CSE 421/521 Final Exam Solutions 12 May 2014

• Enforce: the kernel should be able to enforce resource allocations efficiently.

• Reclaim: the kernel should be able to reuse the resource if it is unused.

• Revoke: the kernel should be able to stop a process from using resources it was
previously allocated.

Clearly #4 doesn’t apply, since once energy is consumed it is gone. However, we
should be able to design mechanisms to accomplish the other three. In addition, en-
ergy consumption presents a new requirement: measurement. We had really been
relying on this all along: in order to enforce allocations, the kernel has to be able to
measure the resource being used. But with energy it’s complex enough to deserve its
own bullet point. (We’ll get back to that in a minute.) So what we have is:

• Measure: the kernel should be able to measure the amount of energy used by each
process.

• Grant: the kernel should be able to allocate energy to processes.

• Enforce: the kernel should be able to enforce energy allocations efficiently and pre-
vent processes from using more energy than they were allocated.

• Revoke: the kernel should be able to stop a process from using energy it was pre-
vious allocated but has not yet consumed.

Let’s go step by step.

Measure: this isn’t as trivial as it sounds. In fact, it’s about half of the battle when
managing energy. There are two main challenges.

First, each hardware component consumes energy differently: one CPU consumes
more energy than another, and may consume a different amount of energy depending
on which frequency level it is running at. Using a Wifi wireless network consumes less
energy-per-byte than mobile data networks such as 3G or 4G, and more than using a
wired network. Spinning disks may consume more energy per operation than Flash.

Normally systems work around this by using a power model, which allows energy con-
sumption to be estimated in software based on usage of the component. For example,
if a process sent a certain number of bytes over a particular network interface, then
it consumed a certain amount of energy to do so. Power models can be quite com-
plicate, however—when estimating network energy consumption you might need to
incorporate things such as the signal strength of the network connection at the time
that the data was sent. In addition, each component requires its own power model,
further complicating the OS.

Alternatively, we could abandon the power model and simply rely on each hardware
component to perform its own energy measurement, exposing the energy consumed
to the OS through a hardware interface. This is a nice way of avoiding the problem
while still respecting hardware differences.
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Second, it can be difficult even to figure out track what process is using which re-
source. When resources are used synchronously—i.e., you have to be running on the
CPU to use them—then this is somewhat simplified. (But what about memory energy
consumed on a multi-core system?) But asynchronous resources pose their own prob-
lems, partly due to layering caused by good interface design. For example, by the
time a disk write reaches the disk driver—which knows the power model—it may no
longer identify the process that issued it, which also will not be the process currently
running. Solving this problem is an open engineering problem, so we didn’t expect
you to—but you would receive credit for identifying it.

Grant and Enforce: if you can measure, you can grant and enforce. Granting energy
simply allows the process to consume it. Depending on your design, you might have
exposed energy grants to the process in some way, or not. Telling the process how
much energy it is allowed to use may allow it to make better decisions about how to
execute. Alternatively, it may have no idea how to use this information. So there are
arguments both ways.

Enforcement, however, is a bit different due to the implicit nature of energy consump-
tion. If the OS wants a process to use less memory, it can move its pages to disk. If it
wants a process to use less CPU, it can schedule it more often. However, if it wants
a process to use less energy, it has to prevent it from using other system resources—
any of them—that would consume energy. The simplest and most effective thing to
do is simply stop it from running. That way it can’t get the the processor to run, use
memory, allocate memory, or use the network or other peripherals, all of which would
consume energy.

Revoke: this one is a bit interesting in the case of energy. To allow processes to plan
around their energy allocation, you might want to give them a bundle of energy to
use and then force them to request more when need it. Various research operating
systems have explored ideas like this, using abstractions like energy “tickets” which
express a reservation on some of the energy remaining in the battery.

The problem is hoarding: what does the OS do if a process requests energy that it
doesn’t use? This could happen because it doesn’t understand its own energy con-
sumption, which is possible, or simply because it wasn’t run as often as it thought it
would be. In either case a revocation mechanism might be required to allow the OS to
reallocate available energy by invalidating previous unused allocations.

Allocation Policy: a final issue that you should have addressed is how to allocate en-
ergy, a unique challenge given its depletable nature. Resources such as the CPU and
memory are usually allocated as needed based on some prioritization scheme, but al-
locating energy this way doesn’t really allow the OS to perform energy management—
it just ends up being purely a side-effect of other allocations.

Instead, it might be worth considering a goal of energy allocation, similar to how
we discussed interactivity or throughput as potential goals of processor scheduling.
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One possible goal that many previous systems have explored is the idea of meeting
a lifetime target. Given a length of time, say 8 hours, the OS is in charge of metering
energy consumption to ensure that the device lasts for at least 8 hours. Users could
configure this based on their charging patterns to ensure that the device would never
run out of energy before reaching a plug. One way to accomplish this is to simply
divide available energy over that time interval and meter it out evenly. At any point
in time, if the device is over its energy budget processes must stop running; if it is
below the budget, they can run freely.

Unfortunately, this isn’t necessarily a great idea. First, smartphones don’t consume
energy smoothly but in bursts. I may use my smartphone intensively for an hour
and then not again for four hours. If I meter smoothly, then I’m bumping up against
the energy budget repeatedly during the first hour and reducing performance, but
then have built up a big surplus during the interactive period. Another problem is
that stopping interactive tasks that have run out of energy is bound to frustrate users.
Instead of taking 10 s to load, my energy-limited browser takes 1 min to load the same
page because of an energy budget. Who’s waiting? Me.

We don’t really have great solutions for these problem yet. If you do, come talk to us!

Note that this question was released to the class before the exam.

Statistics:

• 137 out of 147 students answered this question.

• 20 was the median score.

• 18.73 was the average score.

• 5.72 was the standard deviation of the scores.
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12. (25 points) Smartphones, Meet Cloud
Today’s computing ecosystem is increasingly dominated by the interaction between
two “devices”—smartphones and the cloud—with complementary characteristics.
The cloud is always-on, wall-powered, has large amounts of computational power
as well as memory and storage capacity, but is located at a datacenter far, far away6.
In contrast, smartphones are also always-on and always nearby, but have capabil-
ities constrained by multiple factors: energy, form, price, and heat dissipation. It
seems likely that smartphones will never be as powerful as the cloud, but neither will
the cloud ever be as nearby as your smartphone. It is also much easier to make the
cloud faster—just add more machines—whereas making the smartphone faster can
be challenging—how do I get eight cores into the same spot where four used to fit,
and without lighting a fire in someone’s pants?

But what we want to achieve is for our smartphones to serve as a front-end for the
cloud, making our smartphone seem as powerful as the cloud by intelligently arrang-
ing interactions between the two devices. First, make an argument using Amdahl’s
Law about how future improvements to cloud performance might be lost if cloud
resources aren’t used intelligently (5 points).

Second, apply two of the systems design principles that we discussed in class to im-
proving the interaction between energy-constrained smartphones and the cloud (10
points each). You can make the following simplifying assumptions:

• The cloud and the smartphone are always connected.

• However, access to local smartphone resources—CPU, memory, and storage—is
always much faster than accessing cloud resources due to network delays and lim-
itations7.

• The cloud can compute much faster and has much more storage available than the
smartphone.

• Smartphones are energy-constrained but also regularly recharged.

For each, state the design principle (2 points) and why it is applicable (2 points), and
then present a reasonable design sketch of how you propose to apply the principle
to smartphone-cloud interactions. Each of your improvements should probably have
the effect of either (a) improving user-visible performance, (b) reducing smartphone
energy consumption or (c) providing smartphones access to some new capability that
requires the cloud’s resources.

6Not necessarily that far, but farther than your pocket.
7At some point the speed of light also starts to play a role.
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Graded by Jinghao Shi.

Rubric:

• +5 points for making an argument using Amdahl’s Law about the relationship be-
tween cloud and smartphone performance

• +10 points for each systems design principle applied to the problem

Solution:

There were two parts to this question. First, we asked you to make an argument using
Amdahl’s Law about why future improvements to cloud performance might be lost
if interaction between the cloud and user-facing devices such as smartphones isn’t
managed intelligently. Second, we asked to apply two systems design principles and
describe how they might apply to the interaction between the powerful cloud and
energy-constrained smartphones.

So first, the Amdahl’s Law part. This was intended to be easy and reminiscent of
the argument made by Patterson et. al when motivating RAID. If some portion of my
performance is determined by the cloud, and the remainder is determined by the end-
user smartphone, then Amdahl’s Law states that the overall system performance is
constrained by part that’s not improving. So as the cloud grows faster, its contribution
to overall performance decreases until performance—and conversely, slowdowns—
are entirely determined by the smartphone. Put another way, even if the cloud could
perform its part of the problem instantaneously, we’d still be left with the parts that
the cloud isn’t responsible for that take place on the user-facing device—as well as the
latency to move data back-and-forth between the device and the cloud.

Now, let’s apply some of our favorite systems design principles to the problem of
cloud-smartphone interaction. In no particular order:

1. Add a cache, or as Lampson puts it: cache answers. Given that the cloud is
both powerful but also far away, it would make sense to put a less powerful (or
smaller) device between the user and the cloud. On some level that device al-
ready is the smartphone, so we already have a cache. However, you might have
identified other devices that could be used as caches that are closer to the smart-
phone than the cloud. How about other personal devices located on the same
local network, like desktops or laptops? Desktops aren’t energy-constrained
and are likely to be quite powerful and have a great deal of storage. And al-
though laptops are energy-constrained, they are still more powerful than the
smartphone. So these kind of devices are options.
However, just identifying that the smartphone or other devices can serve as
a cache doesn’t answer some fairly important questions about this technique.
First, caching what? Second, how do you manage the cache to try and hide la-
tency associated with contacting the cloud? One example would be effectively
treating the smartphone’s local storage as a cache for a filesystem where all the
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users file were stored in the cloud. So users would have access to a potentially-
unlimited (or at least very large) amount of content, much more than could be
stored on the 16 or 32 GB of Flash storage located on their smartphone. This stor-
age would also be more reliable, since it could be replicated in the cloud across
multiple machines. So losing your smartphone would not mean losing access
to all of those priceless selfies you took recently! Still, this cache would have to
be intelligently managed, given that there would be a large latency difference
between opening a local file and opening a file stored on the cloud. You could
apply some of the same algorithms here that we applied to page replacement.

2. Use the past to predict the future, or as Lampson puts it: use hints. Speaking of
intelligent cache management, it could really improve device-cloud interaction
if we could anticipate what the user was about to do so that we could retrieve
data from the cloud before it is needed and avoid the latency. So before they
start up their photo-browsing app to review all of their recent selfies, the smart-
phone could pull all of those photos down from the cloud and store them locally.
And right as the user opens their email client, all of their email would have just
synced and new messages waiting and available. An even more powerful appli-
cation of this would be to help predict charging sessions, since this both helps in
managing available energy and in determining whether certain delay-tolerance
tasks—such as updating apps—can be delayed until the device reaches a plug.
Obviously we don’t have a crystal ball here, but we can always apply our old
trick of using the past to predict the future. What might help drive our predic-
tion engine? For charging sessions, we could build up a model of what times
of the day the user normally charges, or how long their typical discharging ses-
sions last. For app activity, we could determine what the probability is that users
launch certain apps based on the time of day, or other apps that they have just
opened, or even based on their location. Smartphones have the benefit of offer-
ing a great deal of additional context information, such as location, that might
work well as inputs into these prediction models.

3. Procrastinate. Related to using the past to predict the future is the idea of pro-
crastination. We’ve talked about cases where procrastination allows the OS to
avoid doing things entirely, such as loading unused code pages by performing
demand paging. In the case of smartphone-cloud interaction, procrastination
might serve that purpose, but it’s more likely that what we want to do is avoid
doing things when discharging that we can wait to do until we are charging, par-
ticularly things that consume a great deal of energy. As mentioned previously,
bulk data transfer between the device and the cloud is an example. Imagine
that a user orders a movie from the cloud to be delivered to their smartphone,
but can set a deadline by which the movie should be on their smartphone and
ready to view—say the point at which they leave their office for the train ride
home. Now, how do the cloud and the smartphone arrange the transfer so that it
both (a) arrives by the deadline and (b) consumes as little energy as possible, by
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avoiding the high energy overhead of transfers over mobile data or poor-quality
Wifi networks. Obviously this involves a bit of procrastination, since at times the
smartphone wants to wait until a better network is available. In addition, if the
user ever plugs in their phone during the day, then the transfer can be performed
without consuming any energy at all—this is the best case.

4. Compute in the background. This design principle we have to twist a bit, but
it’s quite apropos. On a single device the idea of computing in the background
is to try and do work while the device is idle so that we can avoid doing things
when it is busy. Page cleaning—synchronizing the contents of memory with the
contents of the swap file—is a great example of this, since it moves swapping
disk activity into idle periods and off of the swap out path. One way to apply
this to smartphones is just to try and do things while on plug—we’ve discuss
this previously. However, a better idea is to exploit the fact that we have the
powerful cloud nearby! So instead of “compute in the background”, we can
adjust this design principle to be “compute in the cloud”.
Here’s an example. A user takes a photo and the photo recognition software
wants to analyze it to automatically determine what friends are pictured so that
they can be automatically tagged. This is potentially a computationally-intensive
activity, and performing the face detection on the smartphone will consume en-
ergy. But instead, the entire process can be offloaded to the cloud. The cloud is
sent the picture, runs the face detection algorithm, and returns a list of friends
identified in the picture and their face locations.
Sounds like a great idea! But there’s several catches: moving data to the cloud
takes both time and energy. Let’s think about time first. If the time to perform
the transfer is much longer than the time to run the algorithm, it may hurt per-
formance to offload the computation. Think of Shazaam as an example: audio
samples are fairly large, and so the signature detection is performed on the mo-
bile device while the library mapping is performed in the cloud. Uploading the
entire audio clip would make the whole process take much longer. So there is a
balance between computation and data transfer speeds to consider.
Second, let’s think of the energy issue. Remember that our goal here was to ei-
ther improve performance or save energy by offloading to the cloud—preferably
both! But in some cases cloud offloading doesn’t actually save energy either,
and can actually consume more. The argument is similar to the one about per-
formance that we’ve just gone through, but instead of performance we have to
consider the balance between energy for the transfer and the energy required to
compute locally, since not involving the cloud doesn’t require the we transfer
anything to the cloud. As an additional wrinkle, data transfer energy consump-
tion fluctuates, so cloud offloading may make sense when on an energy-efficient
Wifi network but not while on an energy-hungry mobile data network.

Statistics:
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• 56 out of 147 students answered this question.

• 20 was the median score.

• 18.68 was the average score.

• 6.82 was the standard deviation of the scores.
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