
CSE 421/521 Midterm Solutions
—SOLUTION SET—

26 Mar 2014

This midterm exam consists of three types of questions:

1. 10 multiple choice questions worth 1 point each. These are drawn directly from
lecture slides and intended to be easy.

2. 6 short answer questions worth 5 points each. You can answer as many as you want,
but we will give you credit for your best four answers for a total of up to 20 points.
You should be able to answer the short answer questions in four or five sentences.

3. 2 long answer questions worth 20 points each. Please answer only one long answer
question. If you answer both, we will only grade one. Your answer to the long
answer should span a page or two.

Please answer each question as clearly and succinctly as possible. Feel free to draw pic-
tures or diagrams if they help you to do so. No aids of any kind are permitted.

The point value assigned to each question is intended to suggest how to allocate your
time. So you should work on a 5 point question for roughly 5 minutes.

Statistics:

• 150 students took this exam.

• 35 was the median score.

• 35.62 was the average score.

• 6.66 was the standard deviation of the scores.



CSE 421/521 Midterm Solutions 26 Mar 2014

Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) What song was played twice before class this semester?√
“Breathing Underwater” by Metric. © “Ready to Start” by Arcade Fire.

© “The Hockey Song” by Stompin’ Tom Connors. © This is a trick question;
GWA never plays a song twice!

(b) Which of the following instructions can cause an exception?√
All of them. © addiu © lw © syscall

(c) Con Kolavis was particularly interested in improving what aspect of Linux schedul-
ing?
© Overhead. © Throughput.

√
Interactive performance. © Awe-

someness.

(d) What interface does something have to support to look like memory?
© lock() and unlock(). © malloc() and free(). © fork() and
exec().

√
Load and store.

(e) Acquiring a lock will never create a synchronization problem.
© True.

√
False.

(f) Which of the following is not a requirement for deadlock?
© Multiple independent resource requests.

√
A linear dependency graph.

© Protected access to shared resources. © No resource preemption.

(g) Threads can be implemented without kernel support.√
True. © False

(h) Which of the following is the simplest scheduling algorithm to implement?
© Rotating staircase. © Multi-level feedback queue. © Round-robin.√

Random.

(i) Which of the following is not an example of an operating system mechanism?
© A context switch. © Loading a virtual address into the TLB. © Locks
and semaphores.

√
Prioritizing interactive threads.

(j) All of the following are a good fit for the address space abstraction except
© virtual-to-physical address translation. © sbrk. © the TLB.√

base-and-bounds address translation.

2 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

Short Answer

Choose 4 of the following 6 questions to answer. You may choose to answer additional
questions, in which case you will receive credit for your best four answers.

2. (5 points) We have discussed several cases where operating systems provide a useful
illusion to processes. Name one, describe why it is useful, and briefly explain how it
is provided, identifying any hardware cooperation required.

Graded by Zihe Chen.

Rubric:

• +1 point for identifying the illusion.

• +2 point for explaining why it is useful.

• +2 points for describing how it is provided.

Solution:

There were multiple possible answers to this question. Here are a few of the obvious
ones (although you may have received credit for another if you convinced us it was
legitimate):

1. Concurrency. One single-core systems concurrency is an illusion, since there are
never really two threads running at once. This is useful since it provides users
with the illusion that multiple things are happening at once—music is playing
while the web page is updating while they are typing into the terminal. Concur-
rency is provided by rapidly switching between threads fast enough to human
perceptual limitations. This requires the ability to perform context switches be-
tween threads, stopping one’s use of the processor to allow another to continue,
and then returning the first to exactly where it was stopped.

2. Atomicity. When we discussed synchronization we identified cases where we
wanted to make multiple actions that actually occurred separately happen all at
once, or atomicly. An example is a modification to a shared data structure that
requires multiple operations that should all happen at once—imagine adding an
entry to a synchronized linked list, which requires updating multiple pointers.
Atomicity is more than useful, and in certain cases (like our example) is actually
required for correctness. One way we provide the illusion of atomicity is by
locking shared data structures, which forces other users to sleep while we make
our modifications, allowing them to all look atomic.

3. Address spaces. Address spaces comprise multiple illusions: that processes
have access to a large (1) amount of private (2) contiguous (3) memory (4). In re-
ality, (1) the size of the address space may be larger than the amount of available

3 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

physical memory. In addition, the same physical memory may be temporally-
multiplexed between processes, making it not entirely private (2). And it is cer-
tainly not contiguous, with any virtual page mapping to any physical page (3),
and may not even be memory at all (4) if the page has been swapped to disk or
the virtual address is set up to point to a file by mmap. But the address space ab-
straction is useful because it simplifies how processes deal with memory. They
can lay out their memory the same way each time and logically separate regions,
such as the stack and heap, in ways that allow them to grow dynamically. At
some level all of these illusions are provided by translating virtual addresses into
physical addresses, with the extra level of indirection allowing the OS to move
memory around and reuse it for other purposes as long is the virtual addresses
obey the memory interface.

Statistics:

• 134 out of 150 students answered this question.

• 5 was the median score. (This question was too easy.)

• 4.43 was the average score.

• 0.95 was the standard deviation of the scores.

4 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

3. (5 points) First, explain how locking shared data structures can reduce performance
on multicore systems. Second, describe how to perform more intelligent locking to
improve the performance of the following code snippet without sacrificing correctness
or significantly increasing the amount of space needed to store the items. As a hint,
you can assume that the loop frequently has to examine many entries before it finds
one that is available. The code to remove entries is not shown, but you can assume
that entries are periodically removed.

1 struct item {
2 bool valid;
3 int value;
4 };
5

6 struct item array[32768];
7 struct lock * arrayLock;
8

9 int
10 saver(int doubleRainbow)
11 {
12 bool failed = 1;
13

14 // Assume that arrayLock was properly initialized.
15

16 lock_acquire(arrayLock);
17

18 for (int i = 0; i < 32768; i++) {
19 if (array[i].valid == 0) {
20 array[i].value = doubleRainbow;
21 array[i].valid = 1;
22 failed = 0;
23 break;
24 }
25 }
26

27 lock_release(arrayLock);
28 return failed;
29 }

5 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

Graded by Jinghao Shi.

Rubric:

• +1 point for identifying the multicore performance problem.

• +2 points for a correct solution using per-item locks.

• +4 points for a correct solution that reduces the locking granularity using the read-
lock-read-alter pattern.

Solution:

As mentioned in class during the midterm, we asked you to solve this without using
another primitive such as a reader-writer lock (obvious) or condition variable (?).

On multicore systems extra locking can reduce concurrency in certain cases. Imagine
two threads on separate cores are trying to save a doubleRainbow using the code
we provided. Once one of them grabs the big lock and begins to walk the entire array,
the other has to wait until it is complete. This is despite the fact that a lot of the work
can be done without holding the lock.

How? By using the read-lock-read-alter synchronization pattern. Here instead of
using the lock to ensure correctness during the whole loop, we walk the array with-
out holding the lock and use the current state of array[i].valid as a hint indi-
cating that this entry might be free. At that point we have a candidate entry to ex-
amine further, and then we grab the lock. Once we have acquired the lock, we need
to recheck the entry to make sure that it’s still available, but if so we can save our
doubleRainbow and exit. There will be a few cases where concurrent access will
result in two threads locking and checking the same entry, at which point only one
should win and the other must continue. But this is unlikely, and could be made
even less likely by having each thread start their search at a random point in the array
rather than at the beginning.

The code follows. Note that instead of holding the lock for the entire loop, we acquire
it only when we think we have found an available entry but then need to double-check
that this is actually true. (You could actually make this a bit slicker by only setting the
valid flag inside the lock and then setting the value once you have marked it as in
use.)

Per the rubric we gave partial credit for solutions that introduced per-item locks. In a
lot of cases this is not a good idea, since the overhead for locks isn’t worth it for large
arrays. Since we specifically told you not to significantly increase the size needed to
store items this solution did not receive full credit.

6 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

1 int
2 saver(int doubleRainbow)
3 {
4 bool failed = 1;
5

6 // Assume that arrayLock was properly initialized.
7

8 for (int i = 0; i < 32768; i++) {
9

10 // Safe to check without the lock
11

12 if (array[i].valid == 0) {
13 lock_acquire(arrayLock);
14 if (array[i].valid == 0) {
15 array[i].value = doubleRainbow;
16 array[i].valid = 1;
17 failed = 0;
18 }
19 lock_release(arrayLock);
20 if (failed == 0) {
21 break;
22 }
23 }
24 }
25

26 return failed;
27 }

Statistics:

• 72 out of 150 students answered this question.

• 1 was the median score. (This question was hard.)

• 2.11 was the average score.

• 1.45 was the standard deviation of the scores.

7 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

Grader Feedback:

Some students propose to move the lock acquire and lock release in the for
loop, like this

1 for (int i = 0; i < 32768; i++) {
2 lock_acquire(arrayLock);
3 if (array[i].valid == 0) {
4 array[i].value = doubleRainbow;
5 array[i].valid = 1;
6 failed = 0;
7 break;
8 }
9 lock_release(arrayLock);

10 }

While this may improve simultaneous access to the data structure somewhat, it doesn’t
really solve the problem which is the amount of time that each thread is locking the
data structure in order to find a free entry.

Some students know to first check valid before acquiring the lock, but forget to check
valid again after:

1 for (int i = 0; i < 32768; i++) {
2 if (array[i].valid == 0) {
3 lock_acquire(arrayLock);
4 array[i].value = doubleRainbow;
5 array[i].valid = 1;
6 failed = 0;
7 lock_release(arrayLock);
8 break;
9 }

10 }

This has obvious problems.

Finally, other students proposed one lock per entry.

8 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

4. (5 points) Identify three system calls that allocate new virtual addresses (i.e., allow
the process to use them) and describe the semantics associated with each.

Graded by Zihe Chen.

Rubric:

• +1 point for identifying each system call.

• +1 point for each system call if properly described.

Solution:

This one came pretty much directly from the lecture slides.

1. exec(): loads content from the ELF file and sets up virtual addresses mainly
that point to the process’s code area and any staticly-declared variables.

2. fork(): copies the parent’s entire address space, including all the code pages,
the entire heap, and one (or more) thread stacks, allowing the child to use all of
these virtual addresses which will (eventually) have to point to private physical
addresses.

3. sbrk(): extends the “break point”, or the top of the process’s heap, allocat-
ing new virtual addresses that point to physical memory. Not usually called by
processes directly, but instead by malloc libraries when their subpage allocator
runs out of space.

4. mmap(): asks the kernel to map a portion of virtual addresses to point to a region
of a file.

Statistics:

• 94 out of 150 students answered this question.

• 4 was the median score.

• 4 was the average score.

• 1.24 was the standard deviation of the scores.

Grader Feedback:

Most students got fork() and execv(); few listed mmap() or sbrk(). read() and
write() were popular wrong answers.

9 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

5. (5 points) So far we have discussed memory as being uniform, meaning that from
the perspective of the core (or cores) the memory access time is constant for each byte
of physical memory. On some systems, however, this assumption fails and access
time varies with location; we refer to these systems as having a NUMA (non-uniform
memory access) design.

Consider a NUMA system where each core has access to a small amount of (rela-
tively) fast physical memory and a larger amount of (relatively) slow physical mem-
ory. Assume that memory management hardware can map process virtual addresses
to either part of physical memory. How does this design complicate the address space
abstraction? At a high level, describe a way to make use of this NUMA property. (One
of the systems design principles we have discussed may come in handy.)

Graded by Jinghao Shi.

Rubric:

• 2 points for identifying the complication.
• 3 points for describing an approach to using this NUMA layout.

Solution:

The complication is that NUMA challenges the address space assumption that all
memory is uniform. Now, some parts of each process’s address space will be faster
than others, and if care is not taken these faster parts may change over time as pages
move to different regions of physical memory.

The simplest approach to using the faster memory is to treat it as a cache for the slower
memory, leveraging our design principle as creating the machine as a series of caches.
The operating system should try to put frequently-used pages in the fast memory
and less-frequently used pages in the slow memory, which also requires some way of
tracking page usage. (Since we haven’t covered that yet, not mentioning it didn’t hurt
your score.)

Statistics:

• 44 out of 150 students answered this question.
• 4.5 was the median score. (This question was too easy.)
• 4 was the average score.
• 1.19 was the standard deviation of the scores.

Grader Feedback:

This question seemed to scare students despite it being not really that difficult. Essen-
tially all you had to do was identify speed differences in main memory and propose
to use the faster memory as a cache; you didn’t even have to explain for what! The
final exam will have more questions like this that ask you to apply the systems design
principles you’ve learned to a new situation.

10 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

6. (5 points) Describe two scheduling algorithms, only one of which can be from the
“no-nothing” group. For each, provide a one sentence explanation and describe one
pro or con of the approach.

Graded by Jinghao Shi.

Rubric:

• +1 point per answer for identifying each scheduler.

• +1 point per scheduler for a description.

• +1 point per scheduler for a pro or con.

Solution:

We discussed several schedulers, including those listed below. Pros and cons here
aren’t exhaustive and it’s likely that I’ve forgotten a few schedulers and omitted some
benefits and limitations.

• Random. (This is from the no-nothing group.) Choose a thread at random. Pros:
simple and serves as a good comparison point. Cons: too simple and unlikely to
produce good performance.

• Round-Robin. (This is from the no-nothing group.) Simply establish an ordering
between threads and run them in that order. Pros: also simple. Cons: also unlikely
to produce good performance, doesn’t reward interactivity, doesn’t incorporate pri-
orities, etc.

• Shortest-Job First. (This is from the know-it-all group.) Order jobs by how long
they take to complete and run them until they do. Pros: minimizes average waiting
time. Cons: can’t be implemented, also doesn’t time-share between tasks.

• Shortest-Remaining Time First. (This is from the know-it-all group.) Order jobs
by how long they will run before they block and run them in that order. Pros: also
does a good job at reducing waiting time and improving interactive performance.
Cons: can’t be implemented, and may starve long-running non-interactive threads.

• Multi-Level Feedback Queues. Maintain a list of priority queues. Jobs run round-
robin (or random) and always from the top queue first. If a job runs to the end of its
quantum, it may be demoted to a lower priority level; if it completes early, it may
be promoted to a higher priority level. Pros: rewards interactive use. Cons: may
starve long-running background tasks, and all solutions to this issue are somewhat
ugly.

• Rotating Staircase Deadline Scheduler. I’m not going to try to describe this briefly—
instead, refer to the lecture notes. Pros are that it can provide guarantees about
interactive response time. The only con that I can think up is that it never made it
into mainline Linux, but I’m sure that there are others.

11 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

Statistics:

• 147 out of 150 students answered this question.

• 5 was the median score. (This question was too easy.)

• 4.88 was the average score.

• 0.46 was the standard deviation of the scores.

Grader Feedback:

Clearly this question was far too easy. About the only thing that tripped some students
up is they forgot what RSDL stood for—nobody lost points for this, however. (It’s the
Rotating Staircase DeadLine scheduler, so the acronym isn’t quite perfect.)

12 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

Virtual Page Number Physical Page Number Permissions

4366 8308 RE
5437 578 RW
4758 5133 R
5173 8179 W
365 8308 RWE
94 2 R

Table 1: Page Table.

7. (5 points) Given the current process page table above, indicate the result of the fol-
lowing five load, stores, and fetches (load and execute.) Note: to make things easier
on everyone the question uses base-10 arithmetic and 1000-byte pages.

Rubric:

Graded by Zihe Chen.

• +1 point for each translation.

Solution:

1. store 365004: store 8308004

2. fetch 475876: exception! Virtual page 475 is not in the page table. (Note that
4758 is a valid virtual page but this address is on page 475. Tricky.)

3. load 94230: load 2230

4. fetch 234900: exception! Virtual page 234 is not in the page table.

5. store 4366100: exception! Virtual page 4366 is in the page table but is marked
as read and execute only. (You may have been confused by the fact that both
virtual page 4366 and 365 map to physical page 8308, but (a) this is a valid
setup and required to support certain uses and (b) permissions are applied to vir-
tual addresses, not physical addresses, for obvious reasons—physical addresses
change and are not exposed to processes.)

Statistics:

• 137 out of 150 students answered this question.

• 4 was the median score.

• 4.08 was the average score.

• 1.1 was the standard deviation of the scores.

Grader Feedback:

On #2, as expect some students mistakenly used 4758, rather than 475, as the virtual
page number. On #5 some of you missed the permissions.

13 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

Long Answer

Choose 1 of the following 2 questions to answer. Do not answer both questions. If you
do, we will only read one, most likely the one that looks shorter and more incorrect. If
you need additional space, continue and clearly label your answer on other exam sheets.

8. (20 points) Choose one of the following two questions to answer:

1. Interactivity Detection on Smartphones. Smartphones are the fastest growing
computing platform, with most now running platforms built on top of operating
systems with roots in desktop computers such as Linux (Android) and Windows.
Just as we discussed in class, performing effective thread scheduling on mobile
devices can have a big impact on performance. Mobile smartphones, however,
have some important differences from older computing devices that impact the
scheduling process, particularly when considering interactivity.
First, describe the interactivity detection problem and explain why this informa-
tion is generally important to thread scheduling. Continue by presenting two
reasons why interactivity detection could be even more important on mobile
smartphones. You will want to consider patterns of use, changes in the environ-
ment caused by mobility, and constraints specific to smartphones.
Second, consider how the differences between smartphones and traditional de-
vices affect the interactivity detection problem and propose a new approach to
interactivity detection that responds to these differences. You will want to think
about what is different about how users interact with mobile phones, as well as
the different features on these devices compared to laptops and desktops.

2. Jumbo Pages. While operating system pages have traditionally been 4K, some
modern operating systems support “jumbo” pages as large as 64K. Based on
your excellent and fast implementation of virtual memory for CSE 421 ASST3
you are hired as a kernel developer for the new Lindows c© operating system
company. Unfortunately, your boss didn’t take CSE 421 and derives most of his
understanding of operating systems from the movie “Her”1. At present, Lin-
dows does not support jumbo pages, but once your boss hears about them he is
desperate to include them into Lindows c© version 0.0.0.2. He asks you for help.
First, explain why how and in what cases 64K pages would improve or degrade
OS performance. What information about virtual memory use could help the
OS decide whether to locate content on a jumbo or regular-sized page? Second,
explain how, in certain cases, you can implement jumbo-page-like functionality
on top of an existing system that supports 4K pages without changing the under-
lying memory management hardware. What MMU features are required for this
to work? Which benefits of jumbo pages are preserved or lost by your approach?

1Her is a 2013 American science fiction romantic comedy-drama film centering on a man who develops
a relationship with an intelligent OS with a female voice and personality. (Wikipedia)

14 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

Rubric:

Graded by Jinghao Shi.

Both long answers were divided into two 10-point sections, each of which covers sev-
eral issues. Unless superseded by a more detailed rubric, based on your answer you
might receive:

• 10 points for an excellent discussion of all or most of the issues,

• 8 points if you covered most of the issues but made minor mistakes,

• 5 points if some of your points are wrong,

• 3 points for attempts that cover at least one issue,

• 0 points for nothing or a completely irrelevant answer.

Statistics:

For “Interactivity Detection on Smartphones” (8.1):

• 85 out of 150 students answered this question.

• 12 was the median score.

• 11.69 was the average score.

• 4.07 was the standard deviation of the scores.

For “Jumbo Pages” (8.2):

• 64 out of 150 students answered this question.

• 10 was the median score.

• 11.25 was the average score.

• 4.43 was the standard deviation of the scores.

Grader Feedback:

Generally these questions were not that hard if you read them carefully, figure out
what they were asking, and then followed instructions when crafting your answer. Both
questions include a fairly clear template for what your solution was intended to look
like: “First . . . continue . . . You will want to consider . . . Second . . . You will want to
think about . . ..” Sadly some of you seemed to fail to read this part of the question!

More question-specific grader feedback follows each answer below.

15 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

Solution: Interactivity Detection on Smartphones.

Rubric:

• 10 points for describing the interactivity problem.

– 4 points for defining the problem of identifying interactive tasks.
– 3 points for each reason that interactivity detection is important on mobile de-

vices.

• 10 points for an approach to smartphone scheduling incorporating interactivity.

– Do you respond to differences between smartphone and other devices?
– Do you use new smartphone features to help detect interactivity?

Solution:

Schedulers face the challenge of determining when users are waiting, in some form or
another, or a task to finish—to animate a cursor or draw a character glyph in response
to input, as one example, or to render a page that has been retrieved for the Internet
as another. Because users are aware of the performance of interactive tasks, but not
aware of the performance of others, schedulers may want to allocate these interactive
processes more resources or provide them prioritized access to the processor.

Smartphones are a unique computing device that is both (a) always on and (b) battery
powered. Desktops may be left on but are not battery powered, while laptops are
battery-powered but usually shut down when not in use and moved around. These
two features combine to produce a device that has both an important resource limita-
tion (energy) and the potential for a large amount of background usage. This makes it
even more important that smartphone schedulers identify interactive tasks and ensure
that non-interactive work does not drain the device’s battery. Adding to this challenge
is the fact that smartphones face a constantly-changing environment caused by mo-
bility: one minute they have a connection over a high-speed and energy-efficient Wifi
network, the next they are forced to use a slower and more power-hungry 3G mobile
data network. These changes create the potential for non-interactive background tasks
to do even more damage to device lifetimes if they are allowed to use the smartphone
inefficiently.

There were several different ways to incorporate the unique features and interaction
patterns of smartphones into interactivity detection within the smartphone thread
scheduler. Two important aspects of smartphones that you may have noticed and
utilized:

• Unlike computing devices utilizing windowing environments allowing multiple
apps to be present on the screen at one time, the limited size of smartphone displays
means that users are usually only interacting with a single app at one time. While
this doesn’t eliminate the interactivity detection problem entirely—apps may have

16 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

multiple threads, some performing interaction, others doing background jobs—it
does reduce the problem to determining which of the threads of the foreground
app are interactive and which are not. In addition, when the screen is off you
can probably assume that nothing interactive is going on, although you can’t shut
down work altogether because apps deliver notifications to users by performing
background tasks and may be doing other useful things to optimize the foreground
experience. But if the user isn’t looking at the device they probably aren’t waiting
on it!

• Smartphones also feature a number of sensors that may simplify the interactivity
detection problem. Onboard cameras may be able to determine whether the user
is looking at the device and use that to help guess if they are waiting on an action
to complete. Orientation sensors may detect movement associated with gameplay
and trigger additional performance for that highly-interactive set of apps.

That said, since the point of this question was to get you to think creatively we will
definitely accept other reasonable answers. If you really have a great idea about
how to solve this problem, why not come join the blue Systems Research Group
and try your ideas out for real on the hundreds of smartphones deployed as part of
PHONELAB?

Grader Feedback:

Most students were able to define the problem of identifying interactive tasks and
some of the resource limitations specific to smartphones, particularly battery. How-
ever many students missed the “always on” aspect of smartphones and their ability
to run background tasks.

When it came to actually brainstorming new scheduling approaches, Very few of you
were able to propose some smartphone-specific approach such as using sensors or
exploiting the fact that only one app usually runs at a time. Many students just men-
tioned conventional way, like counting how many time a thread sleeps.

Sadly, nobody expressed interest for PhoneLab—yet!

17 / 19

http://blue.cse.buffalo.edu
http://www.phone-lab.org


CSE 421/521 Midterm Solutions 26 Mar 2014

Solution: Jumbo Pages.

Rubric:

• 10 points for discussing jumbo page performance.

– 4 points for identifying and explaining spatial locality as the factor in determin-
ing whether to use jumbo or normal 4K pages.

– 4 points for identifying why jumbo pages improve performance: TLB can map
more entries (2 point) and potentially fewer page faults with sufficient spatial
locality (2 points).

– 2 points for identifying why jumbo pages would degrade performance: more
unnecessary IO bandwidth and page faults without sufficient spatial locality.

• 10 points for the implementation of jumbo pages on top of 4K pages.

– Do you identify that this requires a software-managed TLB?
– Does your solution work?
– Can you describe what performance benefits of jumbo pages are preserved (fewer

TLB faults) and what are lost (can’t map more memory)?

Solution:

First, how and in what cases do 64K pages improve or degrade performance? This
is related to the discussion we had in class regarding page size. A straightforward
benefit of 64K pages is that they allow the TLB to map more memory with the same
number of entries, potentially leading to fewer TLB misses and associated TLB faults.
Since 64K pages are larger than 4K ones, the question reduces to in what case do larger
pages help and hurt? They help when there is sufficient spatial locality in memory
accesses within the contents of the 64K page and they hurt when they do not.

One way to think about it is once I touch one byte of memory on the 64K page, what
is the likelihood I will touch bytes on the 15 other 4K pages inside the 64K page? If
it’s high, I might as well make room for the whole page as soon as I touch any byte
inside of it; if it’s low, I’m going to be moving a lot of memory around without any
gain over locating the byte on a standard 4K page2 So spatial locality is what the OS
would like to know. Maybe the best way of finding out would be to ask the process
to tell me directly, so if it has a data structure that spans multiple 4K pages it would
be better stored on a 64K page. (In addition, I might be able to tell from accesses on
groups of 4K pages that they really all belong to one larger page, but it’s not clear if
the content can be relocated at this point.)

So how do we implement pseudo-64K pages without actual hardware support, i.e.
on 4K underlying pages? Easy: whenever we have a TLB fault within a 64K region
identified as a 64K page we load entries (and page contents) for not only the 4K page
that caused the fault but for all of the other 15 pages within the 64K page. In a way,
we can be even more flexible than real 64K pages, since we could load N extra pages

18 / 19



CSE 421/521 Midterm Solutions 26 Mar 2014

on each side of the faulting page (for example, although 2N + 1 is hard to make even).
Clearly this requires a software-managed TLB to do in all cases, since a hardware-
managed TLB will load the page translation when it is in memory and not alert the OS.
(You could still implement the same behavior on page faults, but that’s not exhaustive
enough to cover all cases.)

The benefits of 64K pages that we preserve are fewer TLB faults since all 15 extra
4K pages on the 64K page are now loaded in the TLB and into memory. Assuming
sufficient spatial locality, this is a good thing! The benefit that is lost is that the amount
of memory that the TLB can map is still limited by the underlying 4K page size.

Grader Feedback:

Most students correctly identified spatial locality as the factor in determining whether
to use jumbo or normal-size page, and most were able to list both reasons why jumbo
pages improve performance: TLB can map more memory, and fewer page faults with
sufficient spatial locality. Some students received partial credit for pointing out that
kernel paging-related data structures would be smaller.

When discussing the performance degradation from jumbo pages students frequently
identified both internal fragmentation (which the solution missed) and less-frequently
IO bandwidth (which the solution mentioned). Both received full credit.

The implementation that most of you proposed combined 4K pages properly, but
many students forgot that doing this requires a software-managed TLB.

19 / 19


