CSE 421/521 Final Exam Solutions

—SOLUTION SET—
15 May 2017

This final exam consists of four types of questions:

1.

Ten multiple choice questions worth one point each. These are drawn directly from
the second-half lecture slides and intended to be (very) easy.

Six short answer questions worth five points each. You can answer as many as you
want, but we will give you credit for your best four answers for a total of up to 20
points. You should be able to answer the short answer questions in four or five sen-
tences. These are mostly (but not entirely) drawn from second-half material.

One medium answer question worth 20 points drawn from second-half material. Your
answer to the medium answer should span a page or two.

Three long answer questions worth 25 points each integrating material from the entire
semester. Answer only two long answer questions. If you answer more, we will only
grade two. Your answer to the long answer question should span several pages.

Please answer each question as clearly and succinctly as possible—feel free to draw pic-
tures or diagrams if they help. The point value assigned to each question is intended to
suggest how to allocate your time. No aids of any kind are permitted.

Statistics:

115 students took this exam.
78 was the median score.
77.83 was the average score.

11.87 was the standard deviation of the scores.




CSE 421/521 Final Exam Solutions 15 May 2017

Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) Which university should GWA work at next?
v/ Illinois / Northeastern ,/ Duke ./ Stony Brook

(b) Significant differences between file systems include everything except

O on-disk layout. 4/ reliably storing Vicky’s data. =~ (O data structures.
(O crash recovery mechanisms.

(c) What is a hint that a page might be good to swap out?

v/ It hasn’t been used for a while (O It’s currently loaded into a core’s TLB
O Alidoesn’tlikeit () It's shared by multiple processes

(d) Which of the following is not a useful approach to improving system perfor-
mance?

(O Carefully choosing an appropriate benchmark. v/ Improving the parts
of your code that you just know are slow. (O Analyzing data from exper-
iments to identify bottlenecks. (O Developing a new simulator to improve
reproducibility.

(e) Which of the following is not a reason that virtualization became popular?

O Difficulty migrating software setups from one machine to another. ,/ Use-
ful hardware virtualization features. (O Ability to reprovision hardware
resources as needed. (O Lack of true application isolation provided by tradi-
tional operating systems.

(f) A virtual address might point to all of the following except

O physical memory. (O adisk block. (O a port on a hardware device.
\/ aregister on the CPU.

(g) A correctly-implemented journaling file system will never lose data.
O True (O Only if Brijesh implemented it / False

(h) It is the most difficult to get repeatable performance results when

O asking Carl. (O running a system simulator. v/ measuring a real
system. () using a system model.

(i) Applications will run exactly the same in a virtual machine as they would on real
hardware.

(O True +/ False

(j) Which of the following makes it easier to virtualize the x86 architecture?

(O hardware page tables (O instructions that are not classically virtualizable
\/ multiple privilege levels (O Guru

2/18



CSE 421/521 Final Exam Solutions 15 May 2017

Short Answer

Choose 4 of the following 6 questions to answer. You may choose to answer additional
questions, in which case you will receive credit for your best four answers.

2. (5 points) Name five different “names” that the operating system must virtualize to
provide container virtualization.

Solution:

Process IDs
User names
Group names
Device names

File names and mount points

AN T i

Host names

7. Host ports
Graded By: Carl Nuessle

Statistics:

e 83 out of 115 students answered this question.
e 3 was the median score.
e 2.7 was the average score.

e 1.49 was the standard deviation of the scores.

Grader Feedback:

Many answers were incomplete to this question, listing considerably fewer than five
items. The answers provided were often incorrect. Common close answers were file
handles (vs. file names) or actual hardware (vs. device names). Other answers were
further off, giving items such as page tables or disk inodes.

3/18




CSE 421/521 Final Exam Solutions 15 May 2017

3. (5 points) Draw a diagram of a traditional (or ext 4-like) file system layout. Label the
inode table (2 points) and show an example file, including inode (1 point), indirect
block (1 point) and data blocks (1 point).

Solution: Here is an example:

r--- .
I |
Indirect Data Data |
| Block Block Block I
|
Lo L e A |
Disk Start Disk End
inode Table

Graded By: Carl Nuessle

Statistics:

e 61 out of 115 students answered this question.
e 4 was the median score.
e 3.67 was the average score.

e 1.34 was the standard deviation of the scores.

Grader Feedback:

This question was frequently skipped. The point rubric in the question was specific.
The most frequently missed items were not using an indirect block or not labeling the
relationship among inodes, indirect blocks and data blocks. Some answers, instead of
diagramming a file system data layout, gave a path walk through.

4 /18




CSE 421/521 Final Exam Solutions 15 May 2017

4. (5 points) Log-structured file systems rely on several assumptions to perform well.
Identify one of those assumptions (2 points) and describe a realistic workload that
would violate it (3 points).

Solution: Two of the more important assumptions that we presented were (1) that a
large cache will soak up most reads and (2) that cleaning can be performed without
interfering with ongoing disk activity. Either one of these being violated will result in
seeks to other parts of the disk, and limit our ability to leave the disk head in the same
place for long periods of write activity.

An example workload that violates (1) would be one where the pattern of reads does
not have enough locality to fit inside the cache. Imagine a rapid linear scan through
an array of disk blocks that is twice the cache size, or large. By the time the reads for
the second half of the array have completed, the entire first half has been evicted and
has to be read in again.

An example workload that violates (2) is a long-running workload with no breaks in
disk activity, and particularly one that creates a lot of holes in the log. Eventually LFS
will need to clean, and because disk activity is ongoing that cleaning will interfere
with normal reads and writes to the active log.

Graded By: Carl Nuessle

Statistics:

e 70 out of 115 students answered this question.
e 2.5 was the median score.
e 2.43 was the average score.

e 2.12 was the standard deviation of the scores.

Grader Feedback:

This question was also frequently skipped. Answers often listed an assumption that
would need be true of any file system, such as not running out of disk space. The
thrust of the question was to discuss a performance assumption of LFS. For full credit,
answers needed to give a “realistic workload” that would violate such an assumption.
In LFS, reads should come from the cache and writes go to the log. Yes, overflowing
the cache with reads will be a violation, but how - what use case will cause this?
Other answers proposed overflowing the cache with writes. LFS also periodically
needs time to clean. A busy system, if it still contains pauses in disk activity that
could be used to clean, such as an interactive system, will not necessarily violate this
assumption.

5/18




CSE 421/521 Final Exam Solutions 15 May 2017

5. (5 points) Describe the big idea behind Redundant Arrays of Independent Disks (RAID)
(3 points). Identify another manifestation of that big idea in a different computer sys-
tem (2 points).

Solution: As stated on the lecture slides, the big idea is that several (or many) cheap
things can be better than one expensive thing.

Other manifestations of that idea are everywhere. Cloud services use many servers to
create one hugely powerful supercomputer, and must deal with the fact that individ-
ual machines are failing constantly. Many crowdsensing techniques use many unreli-
able but cheap human or low-quality sensor inputs to try and replace more expensive
but more accurate sensors. Even multicore chips are on some level a manifestation
of this idea, since as single-core CPUs became harder to cool they were replaced with
multiple simpler cores.

Note that this question was released prior to the final exam.
Graded By: Vicky Zheng

Statistics:

e 115 out of 115 students answered this question.

5 was the median score. (This question was easy, and released early.)

4.72 was the average score.

0.55 was the standard deviation of the scores.

Grader Feedback:

If you did not explain how the different computer systems was a manifestation of
RAIDs big idea, then you lost points.

Also, the big idea is that several cheap things can be better than one expensive thing,
not that several cheap things are better than one expensive thing. I did not take off
points for this because it was close enough.

6 /18



CSE 421/521 Final Exam Solutions 15 May 2017

6. (5 points) Explain the core cost-benefit tradeoff faced when swapping pages to disk.
What is the cost (2 points)? What is the benefit, and how can it differ (2 points)? What
is a clever way to reduce the swap-time cost to zero (1 point)?

Solution: The cost is the I/O required to transfer 4K (or whatever the page size is) to
and maybe from the disk. The cost is usually fixed, although if you can choose a page
to evict that will never be used again you can drop it to half of the normal case.

The benefit is use of the memory that that page consumed for as long as it remains
unused. As a result, the benefit depends on the amount of time that the page remains
on disk. The longer it is swapped out, the longer the memory is available and the
large the benefit is.

Background page cleaning to synchronize in-memory page contents with on-disk con-
tents can remove the need to write the contents to disk when the memory is needed,
and thus reduce the swap-time cost to zero—or almost zero, just the time required to
update the page-table entry, which is zero-ish.

Note that this question appeared on the 2016 final exam.
Graded By: Vicky Zheng

Statistics:

e 112 out of 115 students answered this question.
e 4 was the median score.
e 4.26 was the average score.

e (.84 was the standard deviation of the scores.

Grader Feedback:

Many students did not list how the benefit of swapping could differ, you would lose
a point for this.

Many students also said that a clever way to reduce swap time cost to zero is by
finding ways to not swap at all. This is not what the question was asking, so if you
said this then you lost a point.

7/ 18




CSE 421/521 Final Exam Solutions 15 May 2017

7. (5 points) Define Amdahl’s Law and describe how it guides the process of perfor-
mance improvement.

Solution: We discussed two different formulations of Amdahl’s Law:

The impact of any effort to improve system performance is constrained by
the performance of the parts of the system not targeted by the improve-
ment.

Ignore the thing that looks the worst and fix the thing that is doing the most
damage.

We also had our corollary to Amdahl’s Law:

The more you improve one part of a system the less likely it is that you are
still working on the right problem!

Amdahl’s Law informs performance improvement in a variety of ways. It says that
if you are not working on the right problem, you are not going to accomplish much,
meaning that it’s essentially to figure out what the right problem is. It also implies that
once you have made an improvement, you need to reassess because another part of
the system may now be your bottleneck.

Note that this question appeared on the 2015 final exam.
Graded By: Vicky Zheng

Statistics:

e 111 out of 115 students answered this question.
e 5 was the median score.
e 4.64 was the average score.

e 1.02 was the standard deviation of the scores.

Grader Feedback:

Many students interpreted: “once you have made an improvement, you need to re-
assess because another part of the system may now be your bottleneck” as if you make
an improvement to one part of your system, then you have broken another part. Stu-
dents who thought this lost a point.

8 /18




CSE 421/521 Final Exam Solutions 15 May 2017

Medium Answer

8. (20 points) Virtualization Comparison

We discussed three types of virtualization in class: full hardware virtualization, par-
avirtualization, and OS or container virtualization. First, clearly describe each type of
virtualization and give a brief overview of how it works (5 points each). You should
explain what is virtualized, define the pieces of software that are involved, explain
any constraints that this virtualization places on the virtualized environment, and
identify any key challenges to this virtualization approach.

Second, list three virtualization use cases that motivate each of the three approaches
(2 points each, up to 5 points total). For each of your examples you should make a
convincing case that the other virtualization approaches are impossible, ineffective,
or perform poorly.

Solution:

1. Full hardware virtualization. What is virtualized is the hardware interface. The
VM environment is provided by the virtual machine monitor or VMM. Full hard-
ware virtualization allows an unmodified guest OS and applications to run safely
inside the VM. To allow this to be done safely the guest OS is run without full ker-
nel privilege but instead with a privilege level typical to user applications. When
the guest OS tries to do something that requires kernel privilege, ideally a trap will
occur which the host OS will pass to the VMM to handle. Unfortunately, on the
x86 architecture many instructions do not trap properly and must be dynamically
rewritten at runtime to be handled safely. Full hardware virtualization is required
any time that the guest OS cannot be modified, but has worse performance than
other approaches due to the complicated path that traps and exceptions must take
to return to the VMM.

2. Paravirtualization. What is virtualized is the hardware interface. The VM environ-
ment is provided by the virtual machine monitor, but it is typically referred to as
the hypervisor in this case. Paravirtualization requires small changes to the guest
OS to replace privileged instructions with calls to a new API provided by the hy-
pervisor, which inspects and handles all privileged operations that could pierce the
VM. For paravirtualization to perform well, interaction between the guest OS and
the hypervisor must be efficient. Paravirtualization is an excellent choice when OS-
level isolation is required, or in cases where the virtualized hardware must support
multiple operating systems. It generally outperforms full hardware virtualization
which should not be used if paravirtualization is an option.

3. OS virtualization. What is virtualized is the OS namespace, allowing full isolation
between multiple sets of applications running on top of the same OS, each in their
own container. In this case the OS itself provides the virtualized environment by

9/18




CSE 421/521 Final Exam Solutions 15 May 2017

extending names with container identifiers which allow it to distinguish between
the resources used by processes running in different containers. OS virtualization
requires considerable support by the OS itself, which has to make changes to ev-
ery part of the OS that uses a variety of different names: file names, process IDs,
network identifiers, etc. OS virtualization also requires that all containers use the
same underlying OS and version of the OS interface. OS virtualization is effec-
tive at packaging and distributing integrated software packages because contain-
ers can contain multiple apps and isolate their configurations from other software
packages running on the same system—even other version of the same software
running in the container.

Note that this question was released prior to the final exam and appeared on the 2016
final exam.

Graded By: Carl Nuessle

Statistics:

115 out of 115 students answered this question.
18 was the median score.
16.04 was the average score.

4 was the standard deviation of the scores.

Grader Feedback:

This was a released question; as such responses were fairly strong. The grading rubric
followed the general framework stated in the question as applied to last years solu-

tion.

The first part was to discuss each of the three virtualization techniques. Three
points derived from summarizing the virtualization technique and stating what
was virtualized and what were the software parts. Typical mechanical miscues in-
cluded not specifying the virtualization interface for each technique or neglecting
to list and discuss software parts (guest OS, host OS, VMM, HV as appropriate).
Some answers discussed a (non-existent) guest OS in container virtualization or
host OS in para virtualization. Discussing challenges and constraints comprised
the last 2 points. For full credit, answers needed to go beyond vague statements
such as saying that full virtualization requires “handling traps” or that paravirtu-
alization needs “small changes to the OS”.

The second part, the use cases, were capped at 5 points total and was relatively
well done. However, a number of answers neglected to specify why a particular
case would be better for a particular technique. For example, saying full virtual-
ization is best because we want to run a particular OS—well, why not use para
virtualization?

10 / 18




CSE 421/521 Final Exam Solutions 15 May 2017

Long Answer

9. (25 points) Learning By Doing

A significant part of this class is completing the large programming assignments:
ASST2 and ASST3. Most of you will probably not work on these assignments again—
although Carl has apparently implemented signals and completed ASST4. But hope-
fully you have learned some lessons from your struggles with OS/161 that you can
apply to your future projects.

To answer this question, discuss five things that you learned by completing ASST2
or ASST3. (If you did not complete or attempt either of these assignments, please
answer the other two long answer questions.) In each case, describe what you learned
and how you learned it (3 points) and how you will apply this lesson to your future
projects (2 points). You can talk about tools, design, working with your partner, time
management—whatever you want, as long as it is something that you learned this

semester from the OS/161 assignments.

Rubric:

As embedded in the question, for each lesson:

e +3 points per lesson what and how, and

e +2 points per future application.

Solution:

Answers to this question are fairly personal. But they could include things like the
importance of design, proper coding style, use of Git, how to ask questions effectively
on the forum, effective ways to divide up large amounts of work, the utility of unit
test cases, and other such useful life lessons.

Graded By: Ali Ben Ali

Statistics:

109 out of 115 students answered this question.

25 was the median score. (This question was easy.)

22.78 was the average score.

3.28 was the standard deviation of the scores.

Grader Feedback:

Several students did not answer the second part of the question: “How you will apply
the learned lesson to your future projects”.

11 /18



https://www.ops-class.org/asst/2/
https://www.ops-class.org/asst/3/
https://www.ops-class.org/asst/2/
https://www.ops-class.org/asst/3/

CSE 421/521 Final Exam Solutions 15 May 2017

10. (25 points) Unikernels

Traditionally operating systems were designed to support multiple applications run-
ning together on the same machine. This was a reflection of an era when most machines—
both desktops and servers—typically hosted many different users and applications.

Today, virtualization allows us to easily set up an entire machine dedicated to running
a single application. Operating systems are beginning to evolve to support this use
case. So-called unikernels are operating systems specifically tailored to supporting
a single application: for example, a web or database server, or scientific application.
The single application can run as normal using whatever operating system constructs
it would normally use. However, the operating system below it has shed many of its
traditional features as it only needs to support that single application. This question
explores some of the implications and opportunities of the unikernel design.

First, being able to customize an operating system for a specific application places
requirements on the design of the operating system itself. Identify and discuss these
requirements (10 points). As a (big) hint, unikernels are usually built starting with
so-called library operating systems.

Second, list three beneficial ways that the underlying operating system can be cus-
tomized to support a single application (5 points each). For each, describe what is
beneficial about that particular customization. To receive full credit, please include at
least two different kinds of customizations.

Rubric:
As embedded in the question.
Solution:

This question was inspired by recent work on unikernels, which you can read about
here.

For the first part of the question we would accept (at least) two answers. First and
foremost, unikernels require that the operating system itself be able to be refactored
to meet only the needs of the single application it has been customized to support.
For example, if that application doesn’t need a file system, then the file system por-
tions of the unikernel need to be able to be removed. If that application doesn’t need
a network stack, then that network stack needs to be able to be removed. One of
the benefits of unikernel is that, by shrinking the amount of code that constitutes the
operating system, what results is simpler and shrinks the attack space—making the
overall system more secure.

Traditional operating system designs have tended to become what is called monolithic.
That means that they merge together and create dependencies between lots of differ-
ent parts of the system. In many cases this can improve performance, but in others it
is just the result of sloppy design. Regardless, these dependencies make it difficult to

12 /18


http://unikernel.org/

CSE 421/521 Final Exam Solutions 15 May 2017

remove one large portion of the system, a feature that unikernels require. For exam-
ple, if you completed ASST3.3 you might think about how hard it would be to now
remove swapping from your kernel—or make it possible to both swap or not swap,
depending on whether the unikernel was configured to use a disk or not.

This is why, as the hint mentioned, they are frequently built on so-called library op-
erating systems. Library operating systems try to take a more modular approach to
provide operating system functionality by breaking required pieces into different li-
braries. When creating a unikernel around the needs of a single application, the de-
signer can pick and choose the libraries that that application needs. That has the affect
of removing unnecessary code from the operating system, simplifying it, and making
the overall complete unikernel environment more secure.

A second answer that we would accept for the first part has to do with customization.
Traditional operating system designs may end up adopting certain design choices or
system parameters that work well for all applications. For example, we discussed
earlier in the semester the fact that the Linux scheduler is “baked in” to the system
and not modular. One opportunity when creating a unikernel is to tightly optimize
the operating system for the single application it is supporting. So the designer must
be able to perform deep customization of the operating system being used to ensure
that all “one size fits all” choices are eliminated.

Here are some examples for the second part of the question drawn from three different
categories. But we would accept other reasonable answers as well.

1. Remove unnecessary components. This was already discussed above. Parts of the
operating system that are not needed by the single application can be removed.
Because the application doesn’t use these components, it will not miss them—and
the unikernel has no need to support any other applications. We would accept a
variety of different answers here with appropriate justification.

2. Deep OS customization. The application may want to choose its own scheduler
(if it has multiple threads); customize paging, page size, or other caching behavior;
optimize the network stack to its own behavior, etc. Again, there are a wide variety
of different answers here that we would accept.

3. Elimination of traditional protection boundaries. One interesting opportunity
created by unikernel operating systems is the ability to remove certain protection
boundaries typically used to isolate applications from each other. For example,
unikernels must only provide single address spaces given that they are only sup-
porting one application. If you assume that the application is well-behaved, you
may also eliminate some of the protections usually provided to prevent applica-
tions from crashing the operating system. If a unikernel application crashes, then
essentially the whole system crashes. So if it does something that would violate a
normal protection barrier and we let it crash the operating system, then that is a

13 /18




CSE 421/521 Final Exam Solutions 15 May 2017

pretty much equivalent outcome. That being the case, do we really need to provide

memory protection for the OS, users and groups for the file system, etc.?

Note that these protection reductions have to be applied by the operating system, not
by applications, given that the assumption is that the single application behaves

identically in the unikernel environment.

As indicated in the question, it is important that your answer touch on several of
these opportunities. We would not give full credit, for example, to a solution that just
talked about removing or customizing three different parts of the operating system.
As long as you touched on two of the opportunities above—or others that we have
omitted—you will receive full credit.

Graded By: Ali Ben Ali

Statistics:

e 48 out of 115 students answered this question.
e 12 was the median score.
e 11.88 was the average score.

e 4.69 was the standard deviation of the scores.

Grader Feedback:

Most of the students answers to this question were brief and did not span several
pages as required.

e Part 1: Requirements Many students mentioned, but very briefly discussed refac-
toring the operating system to meet only the needs of the single application. How-
ever, only few also mentioned tightly optimizing the operating system for the single

application it is supporting.

e Part 2: Customization Many students listed three customization, but described

them very briefly.

14 / 18




CSE 421/521 Final Exam Solutions 15 May 2017

11. (25 points) Asynchronous System Calls

Throughout the semester we have considered system calls as being synchronous, or
blocking: when a process performs a system call, it is blocked until the call completes.
However, modern operating systems also support asynchronous, or non-blocking, sys-
tem calls. These allow a process to request the operating system perform some action
on its behalf while not requiring the process wait for the action to take place.

First, considering the system calls we have discussed throughout the semester, de-
scribe several cases in which asynchronous system calls would be useful and how (3
points). Conversely, describe several synchronous system calls that lack a meaningful
asynchronous analog (2 points).

Second, describe any changes to the operating system interface that might be neces-
sary to support certain asynchronous system calls (3 points). Discuss any additional
application programming challenges that non-blocking system calls may introduce (2
points).

Third, briefly explain how a process that can fork multiple threads can emulate asyn-
chronous system calls without true non-blocking support from the operating system
(3 points). Describe the overheads to this approach that might make native asyn-
chronous system calls preferable (2 points).

Finally, describe the kernel changes necessary to support asynchronous system calls.
Walk through the steps required to complete a non-blocking call, describing what
happens at both the process (5 points) and kernel (5 points) level.

Rubric:
As embedded in the question.

Solution:

1. Asynchronous system calls are particularly useful when performing I/O. A pro-
cess can issue read () and write () calls without waiting for those calls to com-
plete, allowing it to go about other business while waiting. (This can be particu-
larly useful when implementing so-called event-based programming frameworks,
which provide an alternative to the multi-threading programming model most of
us are more familiar with.)

Another case of a system call that is not I/O-related that has a meaningful asyn-
chronous analog is waitpid (). Here it is helpful to allow the parent process to
return immediately if the child process has not exited. We refer to a process repeat-
edly checking on a result, as it would be calling an asynchronous non-blocking
waitpid (), as polling.

Several system calls, however, really don’t make much sense asynchronously. What
does it mean to do an asynchronous exec () or fork () ? In the former case, the
process just returns and can run for a bit longer before it is replaced by a new im-
age. This doesn’t seem useful. With fork () you have the problem that the parent

15/ 18




CSE 421/521 Final Exam Solutions 15 May 2017

wants to create a copy at a well-defined moment, and allowing it to return and
continue running would complicate that process. (You could do this though, if
you were careful, but again the use case doesn’t seem obvious.)

2. Let’s focus on the I/ O related asynchronous calls, particularly read () and write ()|
What would we need to add in order to allow the process to return immediately?
The first thing is that we need to provide a way for the process to determine when
the call has completed. One way is to provide some additional system call that a
process can use to poll for a pending I/O request; another way is for the operating
system to send the process a signal when the requested I/O completes.

The reason that this additional signaling mechanism is required is that the process
must not modify or interpret the write () or read () buffer until the non-blocking
call completes. This requirement also creates a new concurrent programming chal-
lenge which the application designer must deal with. With a blocking system call,
there is no way for the process to see a read () in an incomplete state; with a non-
blocking call it can, and care must be taken to ensure that it does not assuming the
correctness of the program depends on it. (It probably does; imagine a web-server
that served pages that had not been completely read from disk.)

3. If a process can create threads visible to the kernel it can emulate asynchronous
calls. When a thread wants to perform a blocking system call, it forks a new thread
specifically for this task. That second thread blocks across the system call while
the original thread continues to run. When the call completes, the thread that was
forked to perform the call exits.

The problem with this approach is that there can be a potentially high overhead
to forking threads that are visible to the operating system kernel. Note that user-
only threads are not appropriate for this purpose. It would be great if they were,
because the overhead of forking a user thread is significantly lower, but because
they are not visible to the operating system a user thread that blocks will stop the
entire process and negate the objective we were trying to achieve.

4. When a process performs a non-blocking call, assuming the arguments are correct
and the read () orwrite () canbe initiated, the kernel can fork a separate kernel
thread to complete the request, allowing the calling thread to return to user mode.
The delegated kernel thread is queued to wait for the I/O to complete. When it
awakens, it must take any actions necessary to notify the process that the asyn-
chronous I/O has completed: marking it as done in a data structure that the pro-
cess can poll or sending the process the appropriate signal. Kernel threads used for
this task may be created when non-blocking calls begin and destroyed when they
are complete, or they may be part of a dedicated kernel thread pool and recycled
across subsequent calls.

Graded By: Vicky Zheng

Statistics:

16 / 18




CSE 421/521 Final Exam Solutions 15 May 2017

72 out of 115 students answered this question.

16.5 was the median score.

14.82 was the average score.

7.82 was the standard deviation of the scores.

Grader Feedback:

Some students thought that asynchronous calls meant that processes would have ac-
tive waiting instead of busy waiting, this is incorrect. Students also thought that asyn-
chronous calls would mean that there is no blocking at all, but it only means that the
process making the call isnt blocked. See the last line of the first paragraph: These al-
low a process to request the operating system perform some action on its behalf while
not requiring the process wait for the action to take place.

e Part1

— If you did not explain why system calls would be useful as asynchronous system
calls, the maximum amount you could receive for this part is one point. If you did
not list several system calls for this question, the maximum amount you could
receive is two points

— If you did not explain why system calls would not be useful as asynchronous
system calls, you would receive no points. If you did not list several system calls
for this question, the maximum amount you could receive is one points

e Part?2

— Accepted answers that described how the operating system would need a way to
communicate with a process to signal completion. I also accepted answers that
included adding a flag to system calls to indicate whether or not the call should
be performed synchronously or asynchronously. Students needed to explain why
the change was necessary, if they did not, they would lose a point.

— Many students listed problems that were not unique to asynchronous systems
such as race conditions. I think this is because students misunderstand what
asynchronous calls were, as described above. They thought there could be no
blocking at all, which is not the case.

e Part3

— I wanted students to describe explicitly that the parent process would continue
to make progress after forking children to complete its tasks. I was lenient with
this depending on how thorough students answered this question.

— I'was looking for how forking is an expensive operation.
e Part 4: I followed solution pretty closely for this part.

— Process: Needed some way to communicate it was performing an asynchronous
call, whether it be making a new system call or passing a flag. Also needed a way

17 / 18




CSE 421/521 Final Exam Solutions 15 May 2017

to receive information from operating system whether its call is completed. I also
wanted students to mention that after making the call, the process continues to
make progress, but I was lenient on this.

— Kernel: Needed to explain some way of being able to handle multiple asyn-

chronous. Also needed to mention that the kernel needs some way to communi-
cate with the process that made the call.

18 / 18




